SEP 29, 2015 02:59 PM PDT

New Hybrid Chip to Diagnose Ebola

WRITTEN BY: Kerry Evans
Researchers at the University of California Santa Cruz want to make it easier to diagnose Ebola in the field, where few resources are available.  Current diagnostic tests for Ebola rely on PCR (polymerase chain reaction) which requires that the virus’s RNA first be reverse-transcribed into DNA, a process that requires laboratory space.  To simplify things, the group has developed a chip-based system that detects viral RNA.  
 
Hybrid chip technology could simplify Ebola diagnosis.

Ebola is a filovirus that was first isolated in Zaire.  (Incidentally, I just read Richard Preston’s The Hot Zone, which details the Ebola Reston outbreak in laboratory monkeys near Washington D.C.)  Filoviruses are shaped like long filaments and often have a loop, or “shepherd’s crook”, at one end.  The Ebola genome is a single strand of RNA, which codes for seven proteins.  The virus is transmissible through body fluids and causes a devastating hemorrhagic fever, characterized by bloody vomit and diarrhea.

The most recent Ebola outbreak began in West Africa in 2014, with some cases remaining in Sierra Leone and Guinea.  Since then, it has killed over 11,000 people.  In order to manage such outbreaks, healthcare workers must be able to efficiently and accurately diagnose Ebola infections.  

The UC Santa Cruz team, in collaboration with Brigham Young University, UC Berkeley, and the Texas Biomedical Research Institute in San Antonio, developed a hybrid microfluidic/optofluidic chip to diagnose Ebola.  The microfluidic chip is silicon-based and contains tiny channels that transport the sample.  The chip uses a synthetic oligonucleotide (DNA) attached to magnetic beads to trap viral RNA with a matching sequence.  The beads are trapped by a magnet, washed, and the RNAs are labeled with a fluorescent marker.  At this point, the sample makes its way to the optofluidic chip and the fluorescent signal is detected.  

There’s just one (temporary) drawback.  The team hasn’t been able to test their chip with actual blood samples containing Ebola, as this requires a level 4 biosafety lab.  However, the team hopes to soon check that off their list.  


Sources: UC Santa Cruz, CDC, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
AUG 02, 2018
Microbiology
AUG 02, 2018
As Earth Warms, Soil 'Breathes' Harder
Temperatures are on the rise, and it seems soil will become another factor in how our climate changes....
AUG 24, 2018
Microbiology
AUG 24, 2018
How the E. coli Bacterium Can Benefit Us
Often thought of as a dangerous germ, it seems that E. coli may be playing a helpful role in the uptake of iron....
SEP 03, 2018
Microbiology
SEP 03, 2018
A Cell Phone for the Microbiome
This work is a step toward bioengineering the microbes in the gut for improved human health....
SEP 09, 2018
Videos
SEP 09, 2018
Black Hairy Tongue - A Shocking Antibiotic Side Effect
A 55-year-old woman experienced a rare side effect of antibiotics while being treated for an infection....
SEP 26, 2018
Immunology
SEP 26, 2018
What Superbug? A New Antibiotic Contender
Scientists from a biotechnology corporation, Genentech, have altered a protein that blocks a signaling pathway in gram-negative bacteria to engineer a new antibiotic, currently called G0775,...
OCT 12, 2018
Videos
OCT 12, 2018
Don't Mess With Microbes
Researchers demonstrate why antibiotics should not be used casually....
Loading Comments...