SEP 29, 2015 2:59 PM PDT

New Hybrid Chip to Diagnose Ebola

WRITTEN BY: Kerry Evans
Researchers at the University of California Santa Cruz want to make it easier to diagnose Ebola in the field, where few resources are available.  Current diagnostic tests for Ebola rely on PCR (polymerase chain reaction) which requires that the virus’s RNA first be reverse-transcribed into DNA, a process that requires laboratory space.  To simplify things, the group has developed a chip-based system that detects viral RNA.  
 
Hybrid chip technology could simplify Ebola diagnosis.

Ebola is a filovirus that was first isolated in Zaire.  (Incidentally, I just read Richard Preston’s The Hot Zone, which details the Ebola Reston outbreak in laboratory monkeys near Washington D.C.)  Filoviruses are shaped like long filaments and often have a loop, or “shepherd’s crook”, at one end.  The Ebola genome is a single strand of RNA, which codes for seven proteins.  The virus is transmissible through body fluids and causes a devastating hemorrhagic fever, characterized by bloody vomit and diarrhea.

The most recent Ebola outbreak began in West Africa in 2014, with some cases remaining in Sierra Leone and Guinea.  Since then, it has killed over 11,000 people.  In order to manage such outbreaks, healthcare workers must be able to efficiently and accurately diagnose Ebola infections.  

The UC Santa Cruz team, in collaboration with Brigham Young University, UC Berkeley, and the Texas Biomedical Research Institute in San Antonio, developed a hybrid microfluidic/optofluidic chip to diagnose Ebola.  The microfluidic chip is silicon-based and contains tiny channels that transport the sample.  The chip uses a synthetic oligonucleotide (DNA) attached to magnetic beads to trap viral RNA with a matching sequence.  The beads are trapped by a magnet, washed, and the RNAs are labeled with a fluorescent marker.  At this point, the sample makes its way to the optofluidic chip and the fluorescent signal is detected.  

There’s just one (temporary) drawback.  The team hasn’t been able to test their chip with actual blood samples containing Ebola, as this requires a level 4 biosafety lab.  However, the team hopes to soon check that off their list.  


Sources: UC Santa Cruz, CDC, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
NOV 27, 2019
Genetics & Genomics
NOV 27, 2019
Humans Are Continuing to Evolve, Along With Immune-Related Diseases
Humans have evolved in some ways to be less susceptible to pathogens, but those benefits can also carry risks of other diseases....
DEC 15, 2019
Cell & Molecular Biology
DEC 15, 2019
Using a Bacterial Syringe to Deliver Proteins to Cells
Researchers want to use a pathogen's strategy for therapeutic purposes....
DEC 19, 2019
Microbiology
DEC 19, 2019
Ancient Sample of Gum Yields Valuable Genetic Information
This is the first time that investigators have gotten a complete, ancient human genome from anything but bones....
DEC 20, 2019
Genetics & Genomics
DEC 20, 2019
Outbreak of Drug-Resistant Infections Linked to Pet Store Puppies
The CDC is warning people about an outbreak of drug-resistant bacteria that's been linked to store-bought puppies....
JAN 19, 2020
Microbiology
JAN 19, 2020
Photosynthetic Algae Found to Produce Methane
Cyanobacteria are microscopic blue-green algae. These naturally occurring microbes are common, but can also grow into toxic blooms....
FEB 03, 2020
Microbiology
FEB 03, 2020
The Switch Controlling the Stage of a Common Parasite
The parasite Toxoplasma gondii is thought to infect from one-quarter to one-third of the global population....
Loading Comments...