SEP 29, 2015 2:59 PM PDT

New Hybrid Chip to Diagnose Ebola

WRITTEN BY: Kerry Evans
Researchers at the University of California Santa Cruz want to make it easier to diagnose Ebola in the field, where few resources are available.  Current diagnostic tests for Ebola rely on PCR (polymerase chain reaction) which requires that the virus’s RNA first be reverse-transcribed into DNA, a process that requires laboratory space.  To simplify things, the group has developed a chip-based system that detects viral RNA.  
 
Hybrid chip technology could simplify Ebola diagnosis.

Ebola is a filovirus that was first isolated in Zaire.  (Incidentally, I just read Richard Preston’s The Hot Zone, which details the Ebola Reston outbreak in laboratory monkeys near Washington D.C.)  Filoviruses are shaped like long filaments and often have a loop, or “shepherd’s crook”, at one end.  The Ebola genome is a single strand of RNA, which codes for seven proteins.  The virus is transmissible through body fluids and causes a devastating hemorrhagic fever, characterized by bloody vomit and diarrhea.

The most recent Ebola outbreak began in West Africa in 2014, with some cases remaining in Sierra Leone and Guinea.  Since then, it has killed over 11,000 people.  In order to manage such outbreaks, healthcare workers must be able to efficiently and accurately diagnose Ebola infections.  

The UC Santa Cruz team, in collaboration with Brigham Young University, UC Berkeley, and the Texas Biomedical Research Institute in San Antonio, developed a hybrid microfluidic/optofluidic chip to diagnose Ebola.  The microfluidic chip is silicon-based and contains tiny channels that transport the sample.  The chip uses a synthetic oligonucleotide (DNA) attached to magnetic beads to trap viral RNA with a matching sequence.  The beads are trapped by a magnet, washed, and the RNAs are labeled with a fluorescent marker.  At this point, the sample makes its way to the optofluidic chip and the fluorescent signal is detected.  

There’s just one (temporary) drawback.  The team hasn’t been able to test their chip with actual blood samples containing Ebola, as this requires a level 4 biosafety lab.  However, the team hopes to soon check that off their list.  


Sources: UC Santa Cruz, CDC, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
FEB 28, 2020
Cannabis Sciences
FEB 28, 2020
Vaping Harms Microbiome, Increases Infection and Inflammation
Researchers have found that vaping e-cigarettes may change the composition of the mouth’s microbiome, something that leads to higher risks of inflamm
MAR 03, 2020
Drug Discovery & Development
MAR 03, 2020
Drug Used for Ebola Virus Could Fight COVID19
Previously, the drug remdesivir was found to treat coronaviruses that cause Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (
MAR 08, 2020
Microbiology
MAR 08, 2020
Cruise Ship Travel Should Now be Deferred, Says CDC
The CDC continues to issue new guidance related to the outbreak of the SARS-CoV-2 coronavirus and the COVID-19 illness it causes.
MAR 16, 2020
Clinical & Molecular DX
MAR 16, 2020
New diagnostic tech uses AI to screen blood for over 1400 pathogens
New and reemerging microbial threats continue to challenge the public health and infectious disease response teams world...
MAR 29, 2020
Earth & The Environment
MAR 29, 2020
Incinerators and landfills breed antibiotic resistant genes
Here’s a compelling reason to start composting: your municipal solid waste is producing airborne antibiotic-resistance genes. Duhn duhn duhhhhn. But
APR 05, 2020
Microbiology
APR 05, 2020
How Life Beneath the Sea Informs the Search for Life on Mars
Single-celled microbes that live beneath the floor of the ocean have provided insight into how scientists might be able to find life on Mars.
Loading Comments...