MAR 26, 2016 6:52 AM PDT

Long Noncoding RNA Found to Feed Melanoma Growth

WRITTEN BY: Xuan Pham
One of the biggest surprise findings from the completion of the Human Genome Project was that only 1.5 percent of our genome encodes for all of the protein-coding genes. The rest of our genome has been unfairly described as “junk” DNA.
 
But amidst this so-called genomic junk, scientists are finding sequences that modulate cellular processes and affect health and disease. Case in point, Germany-based researchers found a non-coding RNA molecule that feeds melanoma growth. The discovery not only helps to reinstate the importance of non-coding genomic sequences, but also impacts the clinical diagnosis and treatment of a most deadly form of cancer.
 
Genomic

With a fascination with the non-coding regions of the genome, researchers from Gent University, VIB and KU Leuven honed in on a particular molecule class known as long non-coding RNAs (lncRNAs). These transcripts are greater than 200 nucleotides but do not code for any proteins. In studying lncRNA expression across many different cancer types, the researchers found that a particular long non-coding RNA called SAMMSON was highly expressed in melanoma tissues.
 
Further analysis showed that SAMMSON expression is associated with about 10 percent of human melanomas that involve the oncogene MITF. In contrast, they did not find SAMMSON in normal melanocytes or any other adult tissues, suggesting this lncRNA is exclusive to melanoma cells. Additional tests confirmed that SAMMSON can be detected in more than 90% of human melanoma samples.
 
Interestingly, they discovered that blocking SAMMSON expression seemed to inhibit melanoma growth. This was observed in both cell culture studies as well as in mouse models of melanomas. Closer inspection revealed that melanoma cells recruited SAMMSON to the mitochondria, the powerhouse for cancer cells. Thus, by blocking SAMMSON, tumor growth slowed down via mitochondrial activity disruption. The team described this dependency of melanoma cells on SAMMSON as an “addiction.”
 
Exploiting this “addiction” could lead to valuable diagnostic and treatment therapies next. “SAMMSON addiction is a clear vulnerability that we can combat through targeted therapy, without affecting the normal cells from the host or patient," said Jean-Christophe Marine, senior study author from KU Leuven. Indeed, researchers expect a potent melanoma cure if they can engineer a drug that can suppress expression of SAMMSON.
 
As SAMMSON does not exist in normal tissues or in benign melanoma, its presence could be a biomarker for melanoma detection. Furthermore, researchers can use SAMMSON expression as a way to monitor melanoma recurrence post therapy. 
 

Additional source: MNT
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 21, 2019
Cancer
NOV 21, 2019
Inhalable nanoparticle-immunotherapy provides new hope for lung cancer
New research published in Nature Communications details the results of a study that tested inhalable nanoparticle-immunotherapy to determine its impact on ...
NOV 23, 2019
Cancer
NOV 23, 2019
Anal cancer rates increase twofold
Anal cancer has been on the rise in the United States, and while it may not garner as much attention as other cancers, mortality rates for anal cancer have...
NOV 25, 2019
Cancer
NOV 25, 2019
Using AI to determine which patients are best suited for immunotherapy
A new study published in the journal Cancer Immunology Research suggests that we can use artificial intelligence to help determine which people with lung c...
JAN 21, 2020
Cancer
JAN 21, 2020
A gene for leukemia triggers the growth of stem blood cells
New research from the University of Colorado Cancer Center has identified a way to make hematopoietic stem cells from a gene that causes a type of leukemia...
JAN 22, 2020
Cancer
JAN 22, 2020
How the VISTA molecule affects immune responses
A new study describes how a molecule named VISTA has been impeding immune responses in cancer therapies. By turning this molecule “off,” resear...
JAN 20, 2020
Technology
JAN 20, 2020
Open-Source Software Judges The Accuracy of Cancer Predicting Computer Programs
Cancers are generally composed of diverse cells that vary in genetics—these variations often make a particular cancer more susceptible or resistant t...
Loading Comments...