MAY 06, 2016 11:13 AM PDT

New Class of Drugs Beats Lethal Prostate Cancer Resistance

WRITTEN BY: Xuan Pham
Treated prostate cancer cells
Prostate cancer represents a huge health risk for half the world’s population, as it is the most common form of cancer in men. Despite anticancer treatments, some forms of prostate cancer acquire drug resistance and metastasize. For men with these types of aggressive prostate cancers, scientists found that indirect targeting the networks that feed cancer could be new viable option, especially when all other standard treatments have failed.
 
The estimated number of new prostate cancer cases for 2016 exceeds 180,000 men. Current treatments for the disease are confined to the affected prostate tissue, commonly involving radiation and chemotherapy aimed at the cancer cells in the prostate, or surgical removal of the prostate itself. These standard options are effective for the most part; however, some men develop prostate cancers that no longer respond to treatment. Usually these aggressive forms of prostate cancer are associated with production of abnormal androgen receptors that allow tumor cells to evade hormone therapy.
 
Using a new class of drug called Hsp90 inhibitors, a team from the Institute of Cancer Research (ICR) in the United Kingdom found that drug-resistant prostate cancer was destabilized in a mouse model. Hsp90 is a well-known chaperone protein that helps other proteins to fold properly and be stabilized. Inhibitors of this protein have been under scrutiny for anti-cancer potential.
 
In mouse studies, the team found Hsp90 inhibitors worked by targeting many facets of cancer indirectly. The drug destabilized many proteins that prostate cancer cells require for survival. Furthermore, Hsp90 inhibition also blocked cancer cells from making abnormal forms of the male androgen receptor, which is continuously turned “on” and promotes tumor growth and spread. With the inhibition by the drug, cancer cells are now vulnerable to hormone therapies.
 
“We call Hsp90 inhibitors ‘network drugs’ because they tackle several of the signals that are hijacked in cancer all at once, across a network rather than just a single signalling pathway. These drugs can hit cancer harder than those targeting only one protein and look promising for preventing or overcoming drug resistance,” said Paul Workman, co-leader of the study, and Chief Executive of the ICR.
 
The team found that Hsp90 inhibition was effective against AR-V7, which is the most common androgen receptor variant associated with drug-resistant prostate cancer.  “It’s an exciting discovery which adds a string to the bow of these cancer drugs, and means they could work against prostate cancers that have otherwise stopped responding to treatment,” said Workman.
 
Because the drugs that inhibit Hsp90 are already in clinical trials for other types of cancer, the team hopes the clinical phase for prostate cancer patients will happen swiftly. If successful in clinical trials, this new class of drug could offer a new line of therapy for prostate cancer patients who have otherwise run out of treatment options.
 

Additional source: Institute of Cancer Research, MNT
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
MAR 18, 2020
Cancer
MAR 18, 2020
Statins could reduce heart damage from breast cancer treatment
Cancer treatments have a lot of side effects. For breast cancer chemotherapies that use drugs like anthracycline an ...
APR 01, 2020
Cancer
APR 01, 2020
New immunotherapy for ovarian cancer
Research published recently in the Journal of Experimental Medicine suggests that targeting macrophages in a new kind of ...
MAY 03, 2020
Cancer
MAY 03, 2020
New genes targeted for anti-cancer therapies
Research published in the journal Genome Biology reports the discovery of two overlooked genes that have the potential t ...
MAY 21, 2020
Cancer
MAY 21, 2020
A New Player in the Regulation of Cancer's Microenvironment
Breast cancer is one of the most common cancers in the world.  Triple-negative breast cancer (TNBC) is a sub-type o ...
MAY 21, 2020
Cancer
MAY 21, 2020
When is the best time to talk about end-of-life decisions with your teen who has cancer?
A study published recently in JAMA Network highlights the need for improved pediatric advanced care for adolescents with ...
MAY 23, 2020
Cancer
MAY 23, 2020
A New Biomarker to Identify a Triple Negative Breast Cancer Prognosis
Breast cancer, one of the most common cancers in the world, are commonly separated into one of several sub-types. These ...
Loading Comments...