MAY 18, 2016 11:18 AM PDT

Gene Therapy for Glioblastoma

WRITTEN BY: Cassidy Reich
Glioblastomas are the most aggressive primary brain tumor in humans. This is a highly diverse group of tumors that can affect different areas of the central nervous system, including the cerebral cortex, the cerebellum, the brainstem, and even the spinal cord. Despite the heterogeneity of glioblastomas, there are certain characteristics that they all share that make them very aggressive. Glioblastomas have high mitotic rates (lots of proliferating tumor cells), diminished apoptosis (not a lot of tumor cell death), and lots of neoangiogenesis (good blood flow to the tumor, which is very bad). These tumors are also very difficult to treat and the combination of surgery, chemotherapy, and radiation only manages to extend median life expectancy from 4 months to 14 months.
 
Glioblastoma in 15 year old patient.

A recent paper published in Oncotarget shows some very promising data for gene therapy to treat multiple types of glioblastoma. The researchers from the International School of Advanced Studies (SISSA) in Italy decided to target a gene called Emx2 for their gene therapy approach. Emx2 controls astroglia growth and proliferation during central nervous system (CNS) development. Early on in development, the focus is on neuronal proliferation so Emx2 expression levels are high to limit astroglia proliferation. Once neuronal proliferation starts to slow down, Emx2 levels decline and astroglia start to proliferate. Astroglia and glioblastomas share similar features, so the idea is that by introducing a vector that causes of overexpression of Emx2 into tumors, the antiproliferation activity of Emx2 will halt tumor growth.

The first step in testing this gene therapy is testing it in vitro. Using 7 different patient-derived glioblastoma cell lines, the researchers evaluated the effects of Emx2 overexpression. The results from this in vitro experiment were insanely promising. In less than a week, the tumors didn’t just stop growing, they collapsed. Based on these very exciting results, the researchers tested their gene therapy in vivo where it proved to be just as effective.   

Interestingly, the robust antioncogenic properties of Emx2 are not just the results of its effect on proliferation. The researchers showed that Emx2 affects other “malignancy-related processes.” Specifically, Falcone et al. identified 6 nodes where Emx2 has antioncogenic action. One gene targeting six points in disease pathogenesis is pretty incredible, and necessary in treating a tumor as aggressive as a glioblastoma.

Gene therapy is still risky and this is only one study, but it does seem promising. The authors do point out that more long-term survival studies are needed, as well as a more appropriate vector for gene delivery. But the data presented in this paper, along with previous observations that downregulated Emx2 plays a role in glioblastoma pathogenesis, makes a strong case for Emx2 as a therapeutic target.  

Sources: EurekAlert and Oncotarget
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
JAN 10, 2020
Cancer
JAN 10, 2020
Using cancer drugs to treat COPD
Certain cancer treatments may be used effectively to treat chronic obstructive pulmonary disease (COPD), according to new research published recently in eL...
JAN 13, 2020
Cancer
JAN 13, 2020
The anti-cancer properties of bitter melon
New research published in the journal Cell Communication and Signaling suggests that bitter melon, also known as bitter gourd, may have anti-cancer propert...
JAN 22, 2020
Cancer
JAN 22, 2020
How the VISTA molecule affects immune responses
A new study describes how a molecule named VISTA has been impeding immune responses in cancer therapies. By turning this molecule “off,” resear...
FEB 14, 2020
Cancer
FEB 14, 2020
Cataloging Cancer: DNA fingerprints at work
New research published as part of a global Pan-Cancer Project highlights the world’s most comprehensive catalog to date of DNA fingerprints of cancer...
MAR 09, 2020
Cancer
MAR 09, 2020
The down-low on IUDs and cervical cancer
A recent study from Columbia University Irving Medical Center reviewed the risk of cervical cancer among women using intrauterine devices (IUDs) as a contr...
MAR 24, 2020
Clinical & Molecular DX
MAR 24, 2020
Ultra sensitive cancer diagnostic detects DNA "fingerprints" in liquid biopsies
  Researchers from the Broad and Dana-Farber Cancer Institutes have developed a diagnostic technology that can monitor for the presence of recurring c...
Loading Comments...