MAY 18, 2016 11:18 AM PDT

Gene Therapy for Glioblastoma

WRITTEN BY: Cassidy Reich
Glioblastomas are the most aggressive primary brain tumor in humans. This is a highly diverse group of tumors that can affect different areas of the central nervous system, including the cerebral cortex, the cerebellum, the brainstem, and even the spinal cord. Despite the heterogeneity of glioblastomas, there are certain characteristics that they all share that make them very aggressive. Glioblastomas have high mitotic rates (lots of proliferating tumor cells), diminished apoptosis (not a lot of tumor cell death), and lots of neoangiogenesis (good blood flow to the tumor, which is very bad). These tumors are also very difficult to treat and the combination of surgery, chemotherapy, and radiation only manages to extend median life expectancy from 4 months to 14 months.
 
Glioblastoma in 15 year old patient.

A recent paper published in Oncotarget shows some very promising data for gene therapy to treat multiple types of glioblastoma. The researchers from the International School of Advanced Studies (SISSA) in Italy decided to target a gene called Emx2 for their gene therapy approach. Emx2 controls astroglia growth and proliferation during central nervous system (CNS) development. Early on in development, the focus is on neuronal proliferation so Emx2 expression levels are high to limit astroglia proliferation. Once neuronal proliferation starts to slow down, Emx2 levels decline and astroglia start to proliferate. Astroglia and glioblastomas share similar features, so the idea is that by introducing a vector that causes of overexpression of Emx2 into tumors, the antiproliferation activity of Emx2 will halt tumor growth.

The first step in testing this gene therapy is testing it in vitro. Using 7 different patient-derived glioblastoma cell lines, the researchers evaluated the effects of Emx2 overexpression. The results from this in vitro experiment were insanely promising. In less than a week, the tumors didn’t just stop growing, they collapsed. Based on these very exciting results, the researchers tested their gene therapy in vivo where it proved to be just as effective.   

Interestingly, the robust antioncogenic properties of Emx2 are not just the results of its effect on proliferation. The researchers showed that Emx2 affects other “malignancy-related processes.” Specifically, Falcone et al. identified 6 nodes where Emx2 has antioncogenic action. One gene targeting six points in disease pathogenesis is pretty incredible, and necessary in treating a tumor as aggressive as a glioblastoma.

Gene therapy is still risky and this is only one study, but it does seem promising. The authors do point out that more long-term survival studies are needed, as well as a more appropriate vector for gene delivery. But the data presented in this paper, along with previous observations that downregulated Emx2 plays a role in glioblastoma pathogenesis, makes a strong case for Emx2 as a therapeutic target.  

Sources: EurekAlert and Oncotarget
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
JUN 06, 2020
Cancer
Developing a Platform to Efficiently Test Antibody-Drug Conjugates
JUN 06, 2020
Developing a Platform to Efficiently Test Antibody-Drug Conjugates
Cancer has been one of the most persistent diseases modern medicine has faced. Due to its nature, treatments are often t ...
JUN 08, 2020
Cell & Molecular Biology
How Cancer Cells Use Inflammation as a Shield Against Viruses
JUN 08, 2020
How Cancer Cells Use Inflammation as a Shield Against Viruses
Microorganisms called oncolytic viruses can infect and kill cancer cells while leaving healthy cells alone.
JUN 12, 2020
Cancer
Reserach on APOBEC3A opens the way for new treatment targets
JUN 12, 2020
Reserach on APOBEC3A opens the way for new treatment targets
New research identifies how a protein, APOBEC3A, triggers genetic changes that result in various cancers. This expansion ...
JUN 22, 2020
Cancer
Black patients are underrepresented in clinical trials
JUN 22, 2020
Black patients are underrepresented in clinical trials
Amidst the swell of racial injustice that the country is bringing to light, new research reports that Black patients are ...
JUL 18, 2020
Cancer
Clinical trials go forth for osteosarcoma in dogs and glioblastoma multiforme in humans using the same precision medicine
JUL 18, 2020
Clinical trials go forth for osteosarcoma in dogs and glioblastoma multiforme in humans using the same precision medicine
A development in precision medicine in cancer treatment for dogs has led to a similar advancement in cancer treatment fo ...
JUL 14, 2020
Drug Discovery & Development
How Cancer Cells Influence Drug Responses
JUL 14, 2020
How Cancer Cells Influence Drug Responses
When studying a large number of brain samples, researchers were able to characterize how changes in cells influence drug ...
Loading Comments...