MAY 18, 2016 11:18 AM PDT

Gene Therapy for Glioblastoma

WRITTEN BY: Cassidy Reich
Glioblastomas are the most aggressive primary brain tumor in humans. This is a highly diverse group of tumors that can affect different areas of the central nervous system, including the cerebral cortex, the cerebellum, the brainstem, and even the spinal cord. Despite the heterogeneity of glioblastomas, there are certain characteristics that they all share that make them very aggressive. Glioblastomas have high mitotic rates (lots of proliferating tumor cells), diminished apoptosis (not a lot of tumor cell death), and lots of neoangiogenesis (good blood flow to the tumor, which is very bad). These tumors are also very difficult to treat and the combination of surgery, chemotherapy, and radiation only manages to extend median life expectancy from 4 months to 14 months.
 
Glioblastoma in 15 year old patient.

A recent paper published in Oncotarget shows some very promising data for gene therapy to treat multiple types of glioblastoma. The researchers from the International School of Advanced Studies (SISSA) in Italy decided to target a gene called Emx2 for their gene therapy approach. Emx2 controls astroglia growth and proliferation during central nervous system (CNS) development. Early on in development, the focus is on neuronal proliferation so Emx2 expression levels are high to limit astroglia proliferation. Once neuronal proliferation starts to slow down, Emx2 levels decline and astroglia start to proliferate. Astroglia and glioblastomas share similar features, so the idea is that by introducing a vector that causes of overexpression of Emx2 into tumors, the antiproliferation activity of Emx2 will halt tumor growth.

The first step in testing this gene therapy is testing it in vitro. Using 7 different patient-derived glioblastoma cell lines, the researchers evaluated the effects of Emx2 overexpression. The results from this in vitro experiment were insanely promising. In less than a week, the tumors didn’t just stop growing, they collapsed. Based on these very exciting results, the researchers tested their gene therapy in vivo where it proved to be just as effective.   

Interestingly, the robust antioncogenic properties of Emx2 are not just the results of its effect on proliferation. The researchers showed that Emx2 affects other “malignancy-related processes.” Specifically, Falcone et al. identified 6 nodes where Emx2 has antioncogenic action. One gene targeting six points in disease pathogenesis is pretty incredible, and necessary in treating a tumor as aggressive as a glioblastoma.

Gene therapy is still risky and this is only one study, but it does seem promising. The authors do point out that more long-term survival studies are needed, as well as a more appropriate vector for gene delivery. But the data presented in this paper, along with previous observations that downregulated Emx2 plays a role in glioblastoma pathogenesis, makes a strong case for Emx2 as a therapeutic target.  

Sources: EurekAlert and Oncotarget
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
JUL 17, 2018
Cancer
JUL 17, 2018
New Small Cell Lung Cancer Subtype Identified
A new subtype of small cell lung cancer is reported to account for potentially 20% of small cell lung cancers diagnosed; it has unique molecular biomarkers and regulatory mechanisms....
JUL 30, 2018
Cancer
JUL 30, 2018
Key Markers in Melanoma Disease Progression
Researchers have found key markers in identifying the progression of melanoma by stages....
JUL 31, 2018
Cancer
JUL 31, 2018
Can Medicine Prevent Cisplatin-associated Hearing Loss for Pediatric Cancer Patients?
Researchers have determined that sodium thiosulfate's antioxidant properties can prevent hearing loss in pediatric cancer patients being treated with Cisplatin....
JUL 31, 2018
Cancer
JUL 31, 2018
Protein Regulation of DNA Replication in Cancer Cells - A New Early Target for Broad Therapeutics?
DNA replication is a carefully regulated process in each cell of the body. Researchers are looking at the mechanism of DNA replication and associated proteins as a therapy target in cancer...
AUG 14, 2018
Cancer
AUG 14, 2018
New Drug for Refractory Cutaneous T-cell Lymphoma
Mogamulizumab was approved by the FDA this month after a very successful Phase III clinical trial demonstrating its effectiveness in treating patients with challenging CTCL....
SEP 14, 2018
Health & Medicine
SEP 14, 2018
Can You Get Addicted to Tanning at the Gym?
Do you know what GTL means? If you're a fan of the reality series "The Jersey Shore" then you know it stands for "Gym, Tan, Laundry"...
Loading Comments...