MAY 18, 2016 11:18 AM PDT

Gene Therapy for Glioblastoma

WRITTEN BY: Cassidy Reich
Glioblastomas are the most aggressive primary brain tumor in humans. This is a highly diverse group of tumors that can affect different areas of the central nervous system, including the cerebral cortex, the cerebellum, the brainstem, and even the spinal cord. Despite the heterogeneity of glioblastomas, there are certain characteristics that they all share that make them very aggressive. Glioblastomas have high mitotic rates (lots of proliferating tumor cells), diminished apoptosis (not a lot of tumor cell death), and lots of neoangiogenesis (good blood flow to the tumor, which is very bad). These tumors are also very difficult to treat and the combination of surgery, chemotherapy, and radiation only manages to extend median life expectancy from 4 months to 14 months.
 
Glioblastoma in 15 year old patient.

A recent paper published in Oncotarget shows some very promising data for gene therapy to treat multiple types of glioblastoma. The researchers from the International School of Advanced Studies (SISSA) in Italy decided to target a gene called Emx2 for their gene therapy approach. Emx2 controls astroglia growth and proliferation during central nervous system (CNS) development. Early on in development, the focus is on neuronal proliferation so Emx2 expression levels are high to limit astroglia proliferation. Once neuronal proliferation starts to slow down, Emx2 levels decline and astroglia start to proliferate. Astroglia and glioblastomas share similar features, so the idea is that by introducing a vector that causes of overexpression of Emx2 into tumors, the antiproliferation activity of Emx2 will halt tumor growth.

The first step in testing this gene therapy is testing it in vitro. Using 7 different patient-derived glioblastoma cell lines, the researchers evaluated the effects of Emx2 overexpression. The results from this in vitro experiment were insanely promising. In less than a week, the tumors didn’t just stop growing, they collapsed. Based on these very exciting results, the researchers tested their gene therapy in vivo where it proved to be just as effective.   

Interestingly, the robust antioncogenic properties of Emx2 are not just the results of its effect on proliferation. The researchers showed that Emx2 affects other “malignancy-related processes.” Specifically, Falcone et al. identified 6 nodes where Emx2 has antioncogenic action. One gene targeting six points in disease pathogenesis is pretty incredible, and necessary in treating a tumor as aggressive as a glioblastoma.

Gene therapy is still risky and this is only one study, but it does seem promising. The authors do point out that more long-term survival studies are needed, as well as a more appropriate vector for gene delivery. But the data presented in this paper, along with previous observations that downregulated Emx2 plays a role in glioblastoma pathogenesis, makes a strong case for Emx2 as a therapeutic target.  

Sources: EurekAlert and Oncotarget
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
OCT 08, 2020
Cancer
Oral cancer pain levels indicate metastasis
OCT 08, 2020
Oral cancer pain levels indicate metastasis
A new study from NYU College of Dentistry researchers provides insight as to why patients with metastatic oral cancer ex ...
OCT 15, 2020
Cancer
How is mole growth really associated to skin cancer?
OCT 15, 2020
How is mole growth really associated to skin cancer?
New research published in the journal eLife questions the way we think about skin cancer. Focused on mole growth, the st ...
OCT 19, 2020
Cancer
Using qPCR to Diagnose Common Cancer Mutations in Lung Cancer
OCT 19, 2020
Using qPCR to Diagnose Common Cancer Mutations in Lung Cancer
Cancer is a disease characterized by DNA mutations. These mutations, while sometimes small, can cause havoc in a cell&rs ...
NOV 23, 2020
Cancer
Platelets May Protect Cancer Against PD-1 Therapies
NOV 23, 2020
Platelets May Protect Cancer Against PD-1 Therapies
One of cancer’s greatest tools is its ability to manipulate the immune system. Many cancer therapies have arisen t ...
NOV 22, 2020
Cancer
Unmet social needs influence patient breast health care
NOV 22, 2020
Unmet social needs influence patient breast health care
New research to be presented at the annual meeting of the Radiological Society of North America will report on the breas ...
NOV 23, 2020
Cancer
Where are the geographic hotspots of high mortality rates for women with colorectal cancer?
NOV 23, 2020
Where are the geographic hotspots of high mortality rates for women with colorectal cancer?
A study published in Clinical and Translational Gastroenterology highlights the risk disparities in death rates fro ...
Loading Comments...