SEP 23, 2016 2:26 PM PDT

Compound Blocks Fat Synthesis, Chokes Cancer's Fuel Supply

WRITTEN BY: Xuan Pham

Earlier this week, I reported that scientists discovered how some cancers apparently switched off their sweet tooth to burn fat cells instead. Following this discovery, scientists at the Salk Institute found a drug that targets this fat-loving pathway in cancers.
 

Image credit: Pixabay.com

Two of the better-known fat-loving cancer types are prostate cancer and acute myeloid leukemia. Unlike other cancers that prefer sugar over fat, the fat-loving cancers have a penchant for fat as their main source of fuel. Thus, in these cancers, conventional therapies that aim to starve the glucose pathway are ineffective.

In studying cancer’s appetite for fat, Salk Institute researchers found that when the demand is high, cancer cells actually speed up their own fat production. The feedback mechanism is akin to a self-perpetuating supply and demand chain – as the cancer feeds on more fat, it stimulates the cells to make more fat molecules.

"Cancer cells rewire their metabolism to support their rapid division,” noted Reuben Shaw, who heads the Salk team. Knowledge of this feedback pathway naturally pave the way to exploring potential targets that could block fat synthesis, and thereby starve out the cancer cells.

To find possible targets, the Salk team collaborated with Nimbus Therapeutics, a Boston-based biotech that specializes in discovering small molecule drugs. Together, they investigated a molecule known as ND-646, which is an acetyl-CoA Carboxylase (ACC) inhibitor. ACC is an enzyme that’s vital to fat production, and inhibiting this pathway should shut down fat-loving cancer cells.
 


Indeed, experiments in large-scale animal models showed remarkable results – the tumor shrank by nearly two-thirds as compared to the untreated tumors. Furthermore, choking the cancer’s fat supply seemed to work synergistically alongside a common anticancer drug, carboplatin. The combination of the ACC inhibitor and carboplatin suppressed 87 percent of cancer as compared to the 50 percent reduction from carboplatin alone.

"We found surprisingly well-tolerated dosing with some of these novel ACC inhibitors that have broad bioavailability and should not be far away from what would be needed to initiate clinical trials," said Robert Svensson, a Salk research associate and the study’s first author.

"This is the first time anyone has shown that this enzyme, ACC, is required for the growth of tumors and this represents compelling data validating the concept of being able to target fat synthesis as a novel anticancer approach," said Shaw. "The implications are that we have a very promising drug for clinical trials for subtypes of lung cancer as well as liver and other types of cancer. This represents a new weapon in the arsenal to fight cancer."

Additional source: Salk Institute

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUL 23, 2021
Cancer
Repurposed Antibiotics Show Promise Against Skin Cancer
JUL 23, 2021
Repurposed Antibiotics Show Promise Against Skin Cancer
In experiments with mice, researchers from the Netherlands have found that some antibiotics may be effective in tre ...
AUG 19, 2021
Immunology
Immune Enzyme Kills Viruses but Makes Tumors Stronger
AUG 19, 2021
Immune Enzyme Kills Viruses but Makes Tumors Stronger
Robert Louis Stevenson’s 1886 novel Strange Case of Dr. Jekyll and Mr. Hyde describes a man who is a kind, respect ...
SEP 02, 2021
Immunology
Hobit Activates Cancer-Killing Immune Cells
SEP 02, 2021
Hobit Activates Cancer-Killing Immune Cells
Innate lymphoid cells, or ILCs, are specialized immune cells that are increasingly entering the research spotlight. Thes ...
SEP 21, 2021
Drug Discovery & Development
Lifesaving TheraSpheres - glass microbeads can target and destroy colorectal tumors
SEP 21, 2021
Lifesaving TheraSpheres - glass microbeads can target and destroy colorectal tumors
The innovative medical device manufacturer Boston Scientific recently showed success in treating patients with ...
OCT 07, 2021
Cancer
Dual Threat: CAR T Cells Modified to Target Two Neuroblastoma Antigens
OCT 07, 2021
Dual Threat: CAR T Cells Modified to Target Two Neuroblastoma Antigens
Neuroblastoma is a cancer of immature nerve cells found in various areas, including the adrenal glands, neck, chest ...
OCT 25, 2021
Cell & Molecular Biology
The Labroots 2021 Cell Biology Virtual Event Poster Winner: 5-Azacytidine Treatment & Lung Cancer
OCT 25, 2021
The Labroots 2021 Cell Biology Virtual Event Poster Winner: 5-Azacytidine Treatment & Lung Cancer
Labroots virtual events are a great place to share research and learn about others work. These events feature participan ...
Loading Comments...