OCT 04, 2016 10:12 AM PDT

More Evidence that Cancer is Not a Matter of Bad Luck

WRITTEN BY: Xuan Pham

A controversial study last year rocked the foundation of cancer and health research, suggesting that cancer was merely just “bad luck.” Many people didn’t take keen to this notion that the fate of their health was seemingly out of their control. However, a new study challenges the claim of luck, giving hope that our cancer risks can be up to us to decide.

Image credit: Pixabay.comCancer is not the result of one singular mutation. Rather, it is a series of mutations that compound on one another in the worst possible way to derail normal biological processes. But where do the mutations come from in the first place?

As cells grow and divide, they make mistakes along the way. Most of the time, cells have extraordinary quality control measures that catch and correct these errors. In cases where the mistake is too great, the cell can self-destruct in order to prevent the mutations from carrying on to future generations. However, the proof-reading and error-checking is not perfect, not 100 percent. This is why we have such a diverse human population of varying traits, including risks for certain diseases like cancer.

If a mutation in a germ cell (that is, sperm or egg) gets through the cell’s quality control check, it will be inherited by the parent’s children. Still, other mutations are influenced by environmental and lifestyle exposures, such as smoking. But where is the line between random accidents and deliberate cause-and-effect?

The answer, according to a study published in early 2015, was that some organs’ propensity for cancer are simply due to “bad luck.” Published in Science, the study claimed that a significant portion of cancer types, including ovarian and pancreatic cancers, were due to accidental mutations in adult stem cells.

But do these “bad luck” mutations happen at a high enough rate to account for these cancer developments? A new study disputes this apparent claim.

The study, published in Nature, analyzed adult stem cells taken from various organs. The aim was to calculate the rate and patterns of DNA mutations that could account for the high cancer rates in these organs.

What they found was a steady rate of accumulation for DNA mutations, at an average of 40 mutations per year. "We were surprised to find roughly the same mutation rate in stem cells from organs with different cancer incidence," said Ruben van Boxtel, professor at the Department of Genetics at University Medical Center Utrecht in the Netherlands, and senior author of the study.
 


"This suggests that simply the gradual accumulation of more and more 'bad luck' DNA errors over time cannot explain the difference we see in cancer incidence - at least for some cancers,” he added.
So, it’s not a matter of throwing our hands in the air in regards to cancer risks. Lifestyle choices play a huge role in mutations. This isn’t to say that “bad luck” is not part of the story, it just may not play as big a role as previously thought.

"This new research by Dr. van Boxtel and his group is important because it provides actual measured data on the rate of DNA error accumulation in human stem cells for the first time, and shows that perhaps not as much cancer risk is down to this type of 'bad luck' process as has recently been suggested,” said Lara Bennet, science communication manager at Worldwide Cancer Research.

Additional sources: MNT

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
FEB 10, 2021
Drug Discovery & Development
Genetics Affect Response to Cancer Immunotherapy
FEB 10, 2021
Genetics Affect Response to Cancer Immunotherapy
Researchers have found that genetic factors may dictate as much as 20% of the efficacy of checkpoint inhibitors, a kind ...
MAR 08, 2021
Cancer
Your body and the night shift
MAR 08, 2021
Your body and the night shift
New research released from Washington State University Health Sciences Spokane and published online in the Journal ...
MAR 18, 2021
Drug Discovery & Development
New Cancer Immunotherapy Targets Genetic Alteration in All Cancers
MAR 18, 2021
New Cancer Immunotherapy Targets Genetic Alteration in All Cancers
Researchers have developed a prototype for a new kind of cancer immunotherapy. The therapy uses engineered T-cells to ta ...
MAR 23, 2021
Clinical & Molecular DX
AI Test Distinguishes Cancer Cells From Healthy Ones Based on Acidity Levels
MAR 23, 2021
AI Test Distinguishes Cancer Cells From Healthy Ones Based on Acidity Levels
Researchers have developed a new way of differentiating cancer cells from healthy ones—by how acidic they are. The ...
APR 09, 2021
Cancer
Employing machine-learning to identify the biological languages of cancer and Alzheimer's
APR 09, 2021
Employing machine-learning to identify the biological languages of cancer and Alzheimer's
In a study published in the scientific journal PNAS, researchers from St. John's College and the  University of ...
APR 16, 2021
Cancer
Ion pump delivers chemotherapy directly to brain tumors
APR 16, 2021
Ion pump delivers chemotherapy directly to brain tumors
New research published in Advanced Materials Technologies highlights a development in fighting glioblastoma. The study f ...
Loading Comments...