OCT 07, 2016 5:41 AM PDT

Scientists Find an Epigenetic Switch for Cancer's Immortality

WRITTEN BY: Xuan Pham

If you could microscopically dissect a tumor, you’d find a diverse collection of cells. While all the cells have gone rogue in one way or another, some are highly active, constantly dividing, and some appear to be more dormant. What keeps the active cells in their “youthful” state, and how can we exhaust these cells to stop tumors from growing?
 

Image credit: Pixabay.com

Scientists at the Francis Crick Institute now believe the answer to a cancer cell’s immortality involves a linker histone protein known as H1.0.
 
“Every cancer is different, but even within the same tumor cells are highly diverse, and only some of them are truly immortal and drive tumor growth,” said Paola Scaffidi, the senior author of the study. As such, Scaffidi and her team asked what mechanism allowed the cancer cells to keep growing. If we knew this answer, she reasoned, we could exploit it in the form of new anticancer treatments.
 
The team analyzed tumor samples from mice, honing in on any pattern that differed between cells that were seemingly immortal to their more quiescent counterpart. They found that the histone protein H1.0 was unusually low in cells that were trapped in the “youthful” state.
 
Histone proteins act like a spool around which the DNA helix is wound. The degree to which DNA is wrapped on the histones determines the ease of gene transcription, and thus, gene expression. That is, loosely wrapped DNA is associated with increased gene expression, and vice versa.
 
In normal cells, Scaffidi and her team found that H1.0 expression was high, which meant DNA was coiled much tighter. By contrast, cancer cells that lack H1.0 seemed to have DNA uncoiled at certain regions, which then allowed genes involved in proliferation to be systematically activated. H1.0 seemed to act as a genetic switch for cancer cells’ immortality.
 
If it can be turned on erroneously in cancer, can we turn it off to treat cancer? As it turns out, cancer cells have low H1.0 because of a molecular tag on the gene that encodes this protein. We’re not certain of how exactly this tag stops the H1.0 protein being made,” says Scaffidi. But, what the team does know is that targeting the tag to turn on H1.0 levels can reverse the cells’ propensity for eternal youth.
 


“If we can find a way to reactivate H1.0 in cancer patients, then we might be able to stop tumour growth,” Scaffidi said. “We’re looking for molecules which can boost H1.0 that are already used in patients, so we know they’re safe.
 
"This research opens up the possibility of one day turning harmful tumors into benign ones by reverting cancer cells back to a finite lifespan, which would eventually cause the tumor to stop growing. Importantly, we've shown that patients whose tumors had low levels of H1.0 tend to do worse and that this was apparent across a range of cancers,” Scaffidi said. "We now know where to start looking for drugs that work by revoking cancer cells' immortality, rather than just killing them off."
 
Additional sources: Cancer Research UK, MNT, Medical Research interview with Paola Scaffidi

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 22, 2019
Cancer
NOV 22, 2019
The cancerous fear of circular extrachromosomal DNA
New research published in Nature suggests that ring-shaped extrachromosomal DNA (ecDNA) is particularly abundant in tumor cells and plays a malicious role ...
DEC 08, 2019
Cancer
DEC 08, 2019
Why do colder, wetter climates have a higher prevalence of cancer?
You might want to sit down, because this news may come as a surprise: researchers have found an association between cold, wet climates and increased cancer...
DEC 10, 2019
Cancer
DEC 10, 2019
Using anthrax to fight cancer?
Surprising research published recently in the International Journal of Cancer says anthrax may act as a potential bladder cancer treatment. Yes, you read c...
JAN 17, 2020
Cancer
JAN 17, 2020
Could salt nanoparticles kill cancer?
Could salt be the key to killing cancer cells? A new study published in Advanced Materials reports success in using sodium chloride to destroy cancer cells...
JAN 26, 2020
Technology
JAN 26, 2020
Tumor-Highlighting Technology--Lights up Cells!
At the 56th Annual Meeting of The Society of Thoracic Surgeons, researchers announced the groundbreaking technology that can help enhance the visualization...
FEB 16, 2020
Cell & Molecular Biology
FEB 16, 2020
Growing Cells on Scaffolding as an Alternative to Animal Models
Researchers may have just made it easier for investigators to switch to an engineered model and replace their animal colonies with electrospun synthetics....
Loading Comments...