OCT 07, 2016 07:13 AM PDT

C. elegans is a More Complete Research Tool Than Thought

WRITTEN BY: Carmen Leitch
Model organisms are vital to scientific research. They provide researchers with a way to analyze biochemical events in vivo and provide context for research. One such model is the roundworm Caenorhabditis elegans. At only one millimeter long, this small animal has had a big impact on life science and has been extensively characterized. Now, work done at Uppsala University in Sweden has shown that the worm is a more complete model system that researchers knew, and that could enable more in-depth research in areas the worm is especially useful for, such as the early development of the embryo.
 


C. elegans is a nematode, shown developing in the time lapse video above, that has been used to research human disease as well as fundamental questions of basic biology. It is easy and cheap to maintain and house the worms, they eat bacteria and aren’t expensive to feed. They also have the quality of transparency, making observations of the internal workings of the animal simple and straightforward – just look.

Carbohydrate chains that are covered in negatively charged sulfate groups are called sulfated glycosaminoglycans. They have critical functions in early embryonic development as well as in adults. Chondroitin sulfate is one such glycosaminoglycan (GAG) that is made in every animal, from snails to humans. However, it had not been found in roundworms, which has long been a mystery to scientists. In this new work published in Scientific Reports, a novel way to isolate these GAGs has been described; it is essential to solving the mystery of the missing GAG.

"Now we know that Caenorhabditis elegans do have the ability to produce chondroitin sulfate. The vast amount of the same carbohydrate without any sulfate groups produced by the roundworm has probably masked the much fewer chondroitin sulfate chains. A previously undiscovered enzyme with the ability to tranfer sulfate groups to the carbohydrate chains has also been identified in the study," explained first author Tabea Dierker, a researcher in the group of Lena Kjellén at the Department of Medical Biochemistry and Microbiology at Uppsala University.

Scientists know that if enzymes that build carbohydrate chains are blocked, it impedes the ability of cells in the developing embryo to undergo division. It will now be possible for investigators to research whether sulfate groups are critical to that early cell division. Other biological functions that involve chondroitin sulfate can now be modeled in C. elegans thanks to this discovery.

"It is satisfying to see that our results make Caenorhabditis elegans a more complete model system than previously thought,” commented Andrea Hinas, researcher at the Department of Cell and Molecular Biology.
 


An overview of the C. elgans life cycle is discussed in the video above and at the Worm Classroom website.

Sources: Eurekalert!/AAAS via Uppsala University, WormClassroom, Scientific Reports
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 01, 2018
Cell & Molecular Biology
AUG 01, 2018
Levels of One Molecule, LAC, can Diagnose Depression
Depression can be hard to classify and therefore, challenging to treat. New work could help change that....
AUG 21, 2018
Cell & Molecular Biology
AUG 21, 2018
Another Hurdle in Modeling the Human Brain is Overcome
Miniature, simplified versions of human brains were just improved with the addition of an important cell type....
AUG 25, 2018
Cell & Molecular Biology
AUG 25, 2018
Reversing Type 1 Diabetes in Humans and Pets
Researchers may have found a surprising new way to improve symptoms of diabetes....
SEP 08, 2018
Videos
SEP 08, 2018
How Stem Cells can Help us Model, Treat and Repair Eye Disorders
Researchers now have straightforward ways to generate stem cells, which have tremendous therapeutic potential, from specialized adult cells....
SEP 27, 2018
Genetics & Genomics
SEP 27, 2018
Learning What Causes Algae Blooms to Turn Toxic
According to the EPA, algal blooms threaten every state and in our changing climate, they may be more common....
SEP 28, 2018
Cell & Molecular Biology
SEP 28, 2018
New Holotomography Microscope for Imaging Live Cells in 3D
Instead of analyzing fixed, treated cells, researchers can now peek inside of live cells that haven't been changed by reagents or treatments....
Loading Comments...