OCT 07, 2016 7:13 AM PDT

C. elegans is a More Complete Research Tool Than Thought

WRITTEN BY: Carmen Leitch
Model organisms are vital to scientific research. They provide researchers with a way to analyze biochemical events in vivo and provide context for research. One such model is the roundworm Caenorhabditis elegans. At only one millimeter long, this small animal has had a big impact on life science and has been extensively characterized. Now, work done at Uppsala University in Sweden has shown that the worm is a more complete model system that researchers knew, and that could enable more in-depth research in areas the worm is especially useful for, such as the early development of the embryo.
 


C. elegans is a nematode, shown developing in the time lapse video above, that has been used to research human disease as well as fundamental questions of basic biology. It is easy and cheap to maintain and house the worms, they eat bacteria and aren’t expensive to feed. They also have the quality of transparency, making observations of the internal workings of the animal simple and straightforward – just look.

Carbohydrate chains that are covered in negatively charged sulfate groups are called sulfated glycosaminoglycans. They have critical functions in early embryonic development as well as in adults. Chondroitin sulfate is one such glycosaminoglycan (GAG) that is made in every animal, from snails to humans. However, it had not been found in roundworms, which has long been a mystery to scientists. In this new work published in Scientific Reports, a novel way to isolate these GAGs has been described; it is essential to solving the mystery of the missing GAG.

"Now we know that Caenorhabditis elegans do have the ability to produce chondroitin sulfate. The vast amount of the same carbohydrate without any sulfate groups produced by the roundworm has probably masked the much fewer chondroitin sulfate chains. A previously undiscovered enzyme with the ability to tranfer sulfate groups to the carbohydrate chains has also been identified in the study," explained first author Tabea Dierker, a researcher in the group of Lena Kjellén at the Department of Medical Biochemistry and Microbiology at Uppsala University.

Scientists know that if enzymes that build carbohydrate chains are blocked, it impedes the ability of cells in the developing embryo to undergo division. It will now be possible for investigators to research whether sulfate groups are critical to that early cell division. Other biological functions that involve chondroitin sulfate can now be modeled in C. elegans thanks to this discovery.

"It is satisfying to see that our results make Caenorhabditis elegans a more complete model system than previously thought,” commented Andrea Hinas, researcher at the Department of Cell and Molecular Biology.
 


An overview of the C. elgans life cycle is discussed in the video above and at the Worm Classroom website.

Sources: Eurekalert!/AAAS via Uppsala University, WormClassroom, Scientific Reports
 
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 19, 2021
Genetics & Genomics
The Genetic Secrets of Long-Lived People
MAY 19, 2021
The Genetic Secrets of Long-Lived People
For 2019, the United Nations estimated that the average life expectancy for a person is 72.6 years of age. People that l ...
MAY 20, 2021
Genetics & Genomics
The rhAmpSeq™ CRISPR Analysis System for next-generation sequencing analysis of CRISPR edits
MAY 20, 2021
The rhAmpSeq™ CRISPR Analysis System for next-generation sequencing analysis of CRISPR edits
CRISPR genome editing generates double-stranded breaks (DSBs) in genomic DNA and is a targeted method by which to achiev ...
MAY 19, 2021
Drug Discovery & Development
Combination Immunotherapy Shows Promise in Treating HIV
MAY 19, 2021
Combination Immunotherapy Shows Promise in Treating HIV
  Researchers have found that a new combination immunotherapy, alongside antiretroviral therapy (ART), is effective ...
MAY 24, 2021
Cell & Molecular Biology
Animal Trial of Asthma Vaccine Has Positive Results
MAY 24, 2021
Animal Trial of Asthma Vaccine Has Positive Results
Asthma is thought to affect 340 million people. A type of asthma that happens when allergens like dust mites are inhaled ...
MAY 27, 2021
Neuroscience
Research Less Likely to Be True is Cited More
MAY 27, 2021
Research Less Likely to Be True is Cited More
Researchers from the University of California San Diego have found that non-replicable data is cited 153 times more ofte ...
JUN 04, 2021
Drug Discovery & Development
Stem Cell Transplants May Treat Patients with Type 2 Diabetes
JUN 04, 2021
Stem Cell Transplants May Treat Patients with Type 2 Diabetes
Researchers at the Vinmec Research Institute of Stem Cell and Gene Technology in Hanoi, Vietnam have found that stem cel ...
Loading Comments...