OCT 07, 2016 7:13 AM PDT

C. elegans is a More Complete Research Tool Than Thought

WRITTEN BY: Carmen Leitch
Model organisms are vital to scientific research. They provide researchers with a way to analyze biochemical events in vivo and provide context for research. One such model is the roundworm Caenorhabditis elegans. At only one millimeter long, this small animal has had a big impact on life science and has been extensively characterized. Now, work done at Uppsala University in Sweden has shown that the worm is a more complete model system that researchers knew, and that could enable more in-depth research in areas the worm is especially useful for, such as the early development of the embryo.
 


C. elegans is a nematode, shown developing in the time lapse video above, that has been used to research human disease as well as fundamental questions of basic biology. It is easy and cheap to maintain and house the worms, they eat bacteria and aren’t expensive to feed. They also have the quality of transparency, making observations of the internal workings of the animal simple and straightforward – just look.

Carbohydrate chains that are covered in negatively charged sulfate groups are called sulfated glycosaminoglycans. They have critical functions in early embryonic development as well as in adults. Chondroitin sulfate is one such glycosaminoglycan (GAG) that is made in every animal, from snails to humans. However, it had not been found in roundworms, which has long been a mystery to scientists. In this new work published in Scientific Reports, a novel way to isolate these GAGs has been described; it is essential to solving the mystery of the missing GAG.

"Now we know that Caenorhabditis elegans do have the ability to produce chondroitin sulfate. The vast amount of the same carbohydrate without any sulfate groups produced by the roundworm has probably masked the much fewer chondroitin sulfate chains. A previously undiscovered enzyme with the ability to tranfer sulfate groups to the carbohydrate chains has also been identified in the study," explained first author Tabea Dierker, a researcher in the group of Lena Kjellén at the Department of Medical Biochemistry and Microbiology at Uppsala University.

Scientists know that if enzymes that build carbohydrate chains are blocked, it impedes the ability of cells in the developing embryo to undergo division. It will now be possible for investigators to research whether sulfate groups are critical to that early cell division. Other biological functions that involve chondroitin sulfate can now be modeled in C. elegans thanks to this discovery.

"It is satisfying to see that our results make Caenorhabditis elegans a more complete model system than previously thought,” commented Andrea Hinas, researcher at the Department of Cell and Molecular Biology.
 


An overview of the C. elgans life cycle is discussed in the video above and at the Worm Classroom website.

Sources: Eurekalert!/AAAS via Uppsala University, WormClassroom, Scientific Reports
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 14, 2019
Genetics & Genomics
DEC 14, 2019
Learning More About How Gene Variants Impact Cystic Fibrosis
Cystic fibrosis is caused by a genetic mutation, but small changes other genes appear to influence the severity of the disease....
DEC 22, 2019
Cell & Molecular Biology
DEC 22, 2019
Learning More About Cell Dynamics with Holo-Tomographic Microscopy
A new microscopy technique called holo-tomographic microscopy can generate 3D images and does not require labeling....
DEC 22, 2019
Genetics & Genomics
DEC 22, 2019
Functional Mini-Livers Made With New Bioprinting Technique
This technique, could be useful in the production of complete organs that can be transplanted into patients....
JAN 04, 2020
Immunology
JAN 04, 2020
Why Do Skincare Products Sometimes Cause Rashes?
Chemicals commonly found in skincare products are intended to avoid interactions with the part of the immune system responsible for triggering allergic inf...
FEB 09, 2020
Genetics & Genomics
FEB 09, 2020
Mosquitoes are Driven to Search for Heat in the Hunt for Meals
Mosquitoes can be dangerous disease vectors, and they infect and kill hundreds of thousands of people with illnesses like dengue, malaria, and West Nile Virus....
FEB 17, 2020
Cell & Molecular Biology
FEB 17, 2020
Scientists Learn Why Some Body Clocks Are Too Short
Some individuals are morning people to the extreme. Some genetic mutations give the body clock a 20 instead of 24-hour cycle....
Loading Comments...