NOV 21, 2016 7:33 AM PST

Scripps Florida Scientists Create Innovative Drug Design Strategy to Improve Breast Cancer Treatment


JUPITER, FL – November 21, 2016 – While there have been advances in the treatment of hormone-driven breast cancer, resistance to these therapies remains a significant problem. Side effects, including an increased risk of uterine cancer among postmenopausal women, also severely curtail their use for cancer prevention.

However, a new study by scientists from the Florida campus of The Scripps Research Institute (TSRI) offers a novel structure-based drug design strategy aimed at altering the basic landscape of this type of breast cancer treatment.

The findings show that the current approach is not the only, or even the best way, to block the estrogen receptor.

“We have created a different approach that gives us a mechanism to produce new types of therapeutic molecules,” said TSRI Associate Professor Kendall Nettles. “There are a lot of ways to avoid resistance and other cancer risks, and this gives us a tool box full of alternative approaches that could limit or eliminate those effects.”

“With the standard method, no one understands the structural basis,” he continued. “With our approach we know exactly how we did it. If you can see the shape of the receptor protein and see how the drug works on it, that makes the development process that much faster.”

The findings were published November 21, 2016, by the journal Nature Chemical Biology.
 

Seeing Is Believing


The current method of creating this class of drugs, which includes tamoxifen, involves attaching a bulky cluster of atoms with a chainlike structure (called, appropriately, a side chain) to molecules that disrupt the estrogen receptor binding site.

The team’s new strategy taps a technique called X-ray crystallography to visualize the drug candidate as it binds to the receptor. This image is used to guide the production of estrogen receptor degraders that also lack the side chain, helping to reduce the risk of resistance and the development of other cancers.

“Our structure-trapping approach to X-ray crystallography provides a molecular snapshot of how subtle changes to a compound series generate a range of graded activity profiles,” said Research Associate Jerome C. Nwachukwu, who was co-first author with Research Associate Sathish Srinivasan. “This structurally distinct mechanism, acting indirectly rather than involvement of the typical side chain, provides a new way to design biologically distinct molecules for breast cancer prevention and treatment.”

The new method also makes it possible to identify structural rules for how the molecules interact.

“This is the first example of a structure-based design strategy targeting the estrogen receptor where there is a clear correlation between the chemistry, crystal structure and activity, which is another big advance that will be of broad interest to the cancer community,” Srinivasan said. “We show that indirect antagonism can result in inhibition of proliferation in a predictive fashion.”

In addition to Nettles, Srinivasan and Nwachukwu, other authors of the study, “Full Antagonism of the Estrogen Receptor without a Prototypical Ligand Side Chain,” include Nelson E. Bruno, Venkatasubramanian Dharmarajan, Devrishi Goswami, Scott Novick, Jason Nowak and Patrick R Griffin of TSRI; Irida Kastrati, Nittaya Boonmuen, Yuechao Zhao, Benita S. Katzenellenbogen and John A. Katzenellenbogen, Jian Min and Jonna Frasor of the University of Illinois; Hai-Bing Zhou of Wuhan University (China).

The study was supported by the National Institutes of Health (PHS 5R37DK015556, 5R33CA132022, 5R01DK077085, 1U01GM102148 and 5R01CA130932); the Breast Cancer Research Foundation, BallenIsles Men’s Golf Association, Frenchman’s Creek Women for Cancer Research, Susan G. Komen for the Cure® (Grant PDF12229484); the National Natural Science Foundation of China (81172935, 81373255, 81573279) and Hubei Province’s Outstanding Medical Academic Leader Program.

This article was originally published on Scripps.edu.
About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
NOV 06, 2020
Drug Discovery & Development
Anti-depressant Shows Promise in Treating Childhood Cancer
NOV 06, 2020
Anti-depressant Shows Promise in Treating Childhood Cancer
Researchers from Sweden and the US have found that a commonly prescribed antidepressant may help stop the growth of a ca ...
NOV 12, 2020
Immunology
Anti-bodies against a sugar present in meat and dairy products can increase the risk of Colorectal Cancer
NOV 12, 2020
Anti-bodies against a sugar present in meat and dairy products can increase the risk of Colorectal Cancer
Nutrition is essential to health; what we eat in our daily diet affects our overall health condition and what diseases w ...
DEC 01, 2020
Cancer
The price tag of prostate cancer treatment
DEC 01, 2020
The price tag of prostate cancer treatment
New research published in The Journal of Urology from the Official Journal of the American Urological Association&n ...
DEC 16, 2020
Clinical & Molecular DX
Gene Marker PACS a Punch for Cervical Cancer Treatments
DEC 16, 2020
Gene Marker PACS a Punch for Cervical Cancer Treatments
In cervical cancer, mutations in healthy cells cause cells to grow and multiply uncontrollably, invading surrounding tis ...
DEC 14, 2020
Cancer
Children with cancer face no higher risk of infection from COVID-19
DEC 14, 2020
Children with cancer face no higher risk of infection from COVID-19
Relieving news from a University of Birmingham study reports that children with cancer who test positive for COVID-19 do ...
DEC 31, 2020
Cancer
Does inflammation make ADT symptoms worse?
DEC 31, 2020
Does inflammation make ADT symptoms worse?
A new study published in the journal Cancer considers the impact of inflammation on prostate cancer patients underg ...
Loading Comments...