AUG 19, 2017 12:05 PM PDT

Scientists Map Combination of Mutations that Drive Glioblastoma

WRITTEN BY: Xuan Pham

Image credit: Pixabay.com

For disease as complex as cancer, knowing a single mutation is sometimes not enough. In the case of lethal brain tumors, scientists have found many individual mutations, but effective treatments remain elusive.

Instead of honing in on individual mutations, scientists from Yale University are taking a broader approach. That is, they’re interested in how individual mutations coalesce to trigger cancer and drive its progression.

“The human cancer genome is now mapped and thousands of new mutations were associated with cancer, but it has been difficult to prove which ones or their combinations actually cause cancer,” said Sidi Chen, assistant professor of genetics and at Yale’s Systems Biology Institute, and the study’s senior author. “We can also use this information to determine which existing drugs are most likely to have therapeutic value for individual patients, a step towards personalized cancer therapy.’’

In particular, the team is interested in glioblastoma, a highly aggressive cancer of the brain with a meager five-year survival rate of only 10 percent. Chen’s team started with hundreds of genetic mutations already implicated for glioblastoma. They then used CRISPR gene editing and screening technology to study the combinations of these hundreds of mutations. All told, they analyzed over 1500 genetic permutations that could drive glioblastoma progression in mice.

The team found several combinations of mutations, such as B2m–Nf1, Mll3–Nf1 and Zc3h13–Rb1, that could fuel glioblastoma growth. In addition, they identified two mutations in Zc3h13 or Pten, which could explain why some tumors become resistant to the chemotherapy temozolomide.

The results reiterate the complexity of cancer as a genetic disease – that the combination of multiple mutations and pathways are involved in the progression of cancer. Because the whole is greater than the sum of the individual mutations with cancer, this may explain why treatments that only target individual mutations may come up short.

The team hopes their research could help make personalized cancer treatment a reality soon. Furthermore, they say their screening technique could be applied to other cancer types. “Taken together, our study provides a systematic and unbiased molecular landscape of functional tumor suppressors in an autochthonous mouse model of GBM, opening new paths for high-throughput analysis of cancer genetics directly in vivo,” they wrote.

Additional source: Yale UniversityMNT

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 20, 2019
Clinical & Molecular DX
NOV 20, 2019
New diagnostic technology seeks out cancer DNA in blood
For many cancers, early detection has a tremendous impact on patient outcomes. Yet, sadly, many of the most common malignancies, like those of the stomach,...
DEC 14, 2019
Cancer
DEC 14, 2019
Common antibiotic could improve radiation therapy
Have you ever taken the antibiotic vancomycin? As a commonly prescribed antibiotic for colitis and infections caused by Clostridium difficile, vancomycin i...
DEC 16, 2019
Cell & Molecular Biology
DEC 16, 2019
When Migrating, Cancer Cells Choose the Path of Least Resistance
Cancer becomes most deadly when it has metastasized - when cancerous cells move away from the site where cancer started growing....
JAN 02, 2020
Genetics & Genomics
JAN 02, 2020
Mysterious Extrachromosomal DNA is Linked to Childhood Cancer
Scientists are learning more about an unusual kind of DNA that's separate from a cell's genomic DNA....
JAN 07, 2020
Immunology
JAN 07, 2020
"Good" T Cells Can Go "Bad," But in the Case of Cancer, That's A Good Thing
T cells may be able to reach their full potential in the fight against cancer with a little nudge. In 2010, scientists first observed CD4+ T cells transiti...
JAN 11, 2020
Genetics & Genomics
JAN 11, 2020
Single Cells Carry 'Forests' of Chromatin
Researchers are learning more about how every human cell organizes and packages about two meters of DNA....
Loading Comments...