AUG 19, 2017 12:05 PM PDT

Scientists Map Combination of Mutations that Drive Glioblastoma

WRITTEN BY: Xuan Pham

Image credit: Pixabay.com

For disease as complex as cancer, knowing a single mutation is sometimes not enough. In the case of lethal brain tumors, scientists have found many individual mutations, but effective treatments remain elusive.

Instead of honing in on individual mutations, scientists from Yale University are taking a broader approach. That is, they’re interested in how individual mutations coalesce to trigger cancer and drive its progression.

“The human cancer genome is now mapped and thousands of new mutations were associated with cancer, but it has been difficult to prove which ones or their combinations actually cause cancer,” said Sidi Chen, assistant professor of genetics and at Yale’s Systems Biology Institute, and the study’s senior author. “We can also use this information to determine which existing drugs are most likely to have therapeutic value for individual patients, a step towards personalized cancer therapy.’’

In particular, the team is interested in glioblastoma, a highly aggressive cancer of the brain with a meager five-year survival rate of only 10 percent. Chen’s team started with hundreds of genetic mutations already implicated for glioblastoma. They then used CRISPR gene editing and screening technology to study the combinations of these hundreds of mutations. All told, they analyzed over 1500 genetic permutations that could drive glioblastoma progression in mice.

The team found several combinations of mutations, such as B2m–Nf1, Mll3–Nf1 and Zc3h13–Rb1, that could fuel glioblastoma growth. In addition, they identified two mutations in Zc3h13 or Pten, which could explain why some tumors become resistant to the chemotherapy temozolomide.

The results reiterate the complexity of cancer as a genetic disease – that the combination of multiple mutations and pathways are involved in the progression of cancer. Because the whole is greater than the sum of the individual mutations with cancer, this may explain why treatments that only target individual mutations may come up short.

The team hopes their research could help make personalized cancer treatment a reality soon. Furthermore, they say their screening technique could be applied to other cancer types. “Taken together, our study provides a systematic and unbiased molecular landscape of functional tumor suppressors in an autochthonous mouse model of GBM, opening new paths for high-throughput analysis of cancer genetics directly in vivo,” they wrote.

Additional source: Yale UniversityMNT

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
SEP 11, 2020
Cancer
Targeting Senescence in the Peripheral Nervous System to Fight Toxicity
SEP 11, 2020
Targeting Senescence in the Peripheral Nervous System to Fight Toxicity
Chemotherapy is a life-saving discovery for cancer patients. One of its biggest drawbacks is the toxicity that comes wit ...
SEP 08, 2020
Cancer
The story of a very scary protein
SEP 08, 2020
The story of a very scary protein
New research from biochemists at the University of Alberta has identified a protein that triggers the growth of aggressi ...
SEP 15, 2020
Cancer
Soy helps post-op treatment of bone cancer
SEP 15, 2020
Soy helps post-op treatment of bone cancer
New research published in the journal Acta Biomaterialia highlights the post-operative benefits of soy in treatment ...
SEP 25, 2020
Clinical & Molecular DX
Ray of Hope: Rare Cancer Biomarker Discovered
SEP 25, 2020
Ray of Hope: Rare Cancer Biomarker Discovered
Biliary tract cancer, or BTC, isn’t as talked about as breast or prostate cancers, probably because its incidence ...
OCT 18, 2020
Cancer
Virus-mimicking drug attacks melanoma tumors
OCT 18, 2020
Virus-mimicking drug attacks melanoma tumors
Research published recently in the journal Science Translational Medicine from scientists at the UCLA Jonsson Compr ...
NOV 11, 2020
Cell & Molecular Biology
Visualizing a Tumor Suppressor in Action
NOV 11, 2020
Visualizing a Tumor Suppressor in Action
Many types of cells in our bodies are short-lived and need to be replenished. Cell division has to be carefully controll ...
Loading Comments...