JAN 01, 2018 8:09 AM PST

Finding the "Cancer Beacon" That Immune Cells Recognize

WRITTEN BY: Julia Travers

When the body’s immune system fights cancer, how does it choose a specific target? Researchers from the Howard Hughes Medical Institute Investigator (HHMI) have spent decades studying the molecular structure of the immune system in an effort to answer this question. In December 2017, they reported a screening method that allowed them to identify which “signals” displayed by cancer cells were being recognized by the immune system, effectively discovering a “cancer beacon.”

T cell receptors (red) detect antigens (yellow). Credit: Eric Smith and Christopher Garcia

"This is going to widen the scope of our understanding for how tumors are recognized," Stanford University School of Medicine Protein Engineer Christopher Garcia says. Understanding how immune cells choose targets has wide-reaching consequences for the treatment of cancers through immunotherapies, and may also be illuminating for the treatment of autoimmune diseases.

Garcia and his colleagues used tumor samples from two colorectal cancer patients to evaluate how tumor-infiltrating lymphocytes (immune cells) detect signals for cancer (molecules called antigens). They searched through millions of antigens for the ones that the T-cell receptors (proteins on the surface of lymphocytes) would recognize.

This team first developed a similar biochemical process to look through millions of antigens in 2014. In this recent method, they isolated and read the DNA sequences of individual lymphocytes from the two patients. They used the specific T-cell receptors to sift through millions of potential antigens, which a press release characterizes as “molecular needles in an enormous haystack.” HHMI Investigator Mark Davis, Postdoctoral Fellow Arnold Han and graduate student Marvin Gee played a central role in reading the immune cells’ DNA and searching through antigens.

Not only were they able to identify the antigens recognized by the T-cell receptors, they found that the T-cell receptors from both patients recognized the same tumor antigen. This is a major discovery because it may empower researchers to engineer T-cell receptors to recognize cancer antigens identified as common.

"We have to find antigens that are shared across multiple different patients so that one treatment can serve many different people," Garcia says. HHMI also posits that a common antigen could be used as a vaccine that would teach the immune system to find and destroy the cancer cells. This ability to identify which antigens activate immune cells could also help researchers who are trying to better understand autoimmune disorders at the cellular level.

Garcia has long been dedicated to exploring how T-cell receptors work. In 1996, he was part of a team that first unlocked the 3D structure of T-cell receptors bound to targets. In 2014, he discovered T-cell receptors were “far more specific for their targets” than previously assumed. Garcia sees this recent advancement in comprehending how the immune system works shows the power of investing “in the most basic discovery science.”

"This is a great example of how starting with the most reductionist approach can lead you to very powerful insights with clinical relevance," he says.

“Antigen Identification for Orphan T-Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes” was published in the journal Cell.

About the Author
  • Julia Travers is a writer, artist and teacher. She frequently covers science, tech, conservation and the arts. She enjoys solutions journalism. Find more of her work at jtravers.journoportfolio.com.
You May Also Like
SEP 14, 2020
Cancer
MiR-107 and Its Role in Radiosensitivity in Prostate Cancer
SEP 14, 2020
MiR-107 and Its Role in Radiosensitivity in Prostate Cancer
It is often unknown whether a patient will respond to a treatment until it is in full swing. New research is attempting ...
OCT 12, 2020
Cancer
Urine analysis is better at detecting bladder cancer than urine cytology
OCT 12, 2020
Urine analysis is better at detecting bladder cancer than urine cytology
In a study published recently in the American Association for Cancer Research journal Clinical Cancer Research, scientis ...
OCT 12, 2020
Drug Discovery & Development
Researchers Solve Key Problem for Cancer Immunotherapy
OCT 12, 2020
Researchers Solve Key Problem for Cancer Immunotherapy
Cancer immunotherapies are becoming increasingly promising as a standard-of-care treatment. However, despite their promi ...
NOV 11, 2020
Cancer
A New CDK Inhibitor Could Help with Unresponsive Liver Cancer
NOV 11, 2020
A New CDK Inhibitor Could Help with Unresponsive Liver Cancer
Amongst the most common targets of anti-cancer drugs are small regulatory molecules called cyclin-dependent kinases (CDK ...
NOV 25, 2020
Cancer
Using RNA to Diagnose HPV Associated Cancer
NOV 25, 2020
Using RNA to Diagnose HPV Associated Cancer
Diagnostic tools are critical to modern medicine. They might be less exciting than a good therapy or drug, but doctors a ...
NOV 14, 2020
Cancer
New intravenous anti-cancer therapy crosses blood-brain barrier
NOV 14, 2020
New intravenous anti-cancer therapy crosses blood-brain barrier
New research from the University of Michigan reports for the first time a new synthetic protein nanoparticle that is abl ...
Loading Comments...