JAN 01, 2018 12:39 PM PST

Engineers Use Live Tissue to Biohack 3D Structures

WRITTEN BY: Carmen Leitch

It seems that as complex as biological structures are, they can be recreated using only simple instructions, reports new work in Developmental Cell. Bioengineers were able to pattern mechanically active mouse and human cells onto layers of thin, extracellular matrix fibers. With this technique, they could create bowls, ripples, and coils from living tissue. The cells just folded themselves in predictable ways as they acted in concert within a web of the fibers, to mimic the process of natural development.

This image shows the shapes made of living tissue made by the researchers. By patterning mechanically active mouse or human cells to thin layers of extracellular fibers, the researchers could create bowls, coils, and ripple shapes. / Credit: Alex Hughes

"Development is starting to become a canvas for engineering, and by breaking the complexity of development down into simpler engineering principles, scientists are beginning to better understand, and ultimately control, the fundamental biology," explained senior author Zev Gartner, part of the Center for Cellular Construction at the University of California, San Francisco. "In this case, the intrinsic ability of mechanically active cells to promote changes in tissue shape is a fantastic chassis for building complex and functional synthetic tissues."

3D printing and micro molds are already used to make three-dimensional shapes for use in tissue engineering laboratories. Often, however, critical structural features that are present in live tissue is missing from these programmed tissues. Gartner’s team utilized a cell patterning technology that works precisely in three dimensions, called DPAC for DNA-programmed assembly of cells. That allowed them to create the foundation, a template a tissue that folded itself into complex structures, replicating how living tissue is assembled hierarchically during the development of organisms.

"We're beginning to see that it's possible to break down natural developmental processes into engineering principles that we can then repurpose to build and understand tissues," noted first author Alex Hughes, a postdoctoral fellow at UCSF. "It's a totally new angle in tissue engineering."

"It was astonishing to me about how well this idea worked and how simply the cells behave," Gartner said. "This idea showed us that when we reveal robust developmental design principles, what we can do with them from an engineering perspective is only limited by our imagination. Alex was able to make living constructs that shape-shifted in ways that were very close to what our simple models predicted."

Next, the team wants to investigate how the developmental program controlling folding can be joined with others that regulate the patterning of tissue, as well as questions about cell differentiation in response to mechanical changes. 


Learn more about biohacking in the video above, from Ted Talks.

 

Image credit: Pixnio

Sources: AAAS/Eurekalert! Via Cell Press, Developmental Cell

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 19, 2021
Health & Medicine
Can a Blood Test Guide Prognosis for Traumatic Brain Injury?
OCT 19, 2021
Can a Blood Test Guide Prognosis for Traumatic Brain Injury?
Jim had been skateboarding since he was seven years old and spent hours a day practicing. He had been in local competiti ...
OCT 25, 2021
Cell & Molecular Biology
How Fat Cells May Influence Cognitive Decline
OCT 25, 2021
How Fat Cells May Influence Cognitive Decline
Some research has indicated that a Western diet, which is high in processed foods, sugars, and fats, may be contributing ...
NOV 01, 2021
Cell & Molecular Biology
Is This Closed Barrier Why Psychiatric & Bowel Disorders are Linked?
NOV 01, 2021
Is This Closed Barrier Why Psychiatric & Bowel Disorders are Linked?
Inflammatory bowel disease (IBD) is a term that describes chronic gut inflammation and includes ulcerative colitis and C ...
NOV 22, 2021
Cancer
A New Treatment Option for Patients with Cancer in the Eye
NOV 22, 2021
A New Treatment Option for Patients with Cancer in the Eye
Uveal melanoma (UM) is a rare malignancy characterized by the formation of cancer cells in the tissues of the eye. UM be ...
NOV 15, 2021
Cell & Molecular Biology
An Atlas of Regulatory Elements in the Genome of Different Cell Types
NOV 15, 2021
An Atlas of Regulatory Elements in the Genome of Different Cell Types
Although the human genome has been sequenced and we think most protein-coding genes have been identified, there are stil ...
NOV 29, 2021
Genetics & Genomics
A CRISPR-Based Technique to Make New Antibiotics
NOV 29, 2021
A CRISPR-Based Technique to Make New Antibiotics
There are many bacterial organisms, and they can live cooperatively, or they can battle one another. They are also capab ...
Loading Comments...