MAY 21, 2018 05:05 AM PDT

Malarial Organism Characteristics Leads Researchers To Potential Cancer Therapeutic Target

The malaria parasite, Plasmodium falciparum, is dangerous and a public health concern in Africa.  According to sources, malaria infection kills nearly a million people per year with many of those being children in Africa.  P. falciparum is not the only species to cause disease, however. Plasmodium vivax is a less deadly species more common to areas beyond Africa.  There’s been a number of scientists focused on how to target the organism to treat and ultimately prevent illness.

The parasite is also adapting to become resistant to first line drugs currently on the market.  Researchers in Australia utilized the mechanism of the parasite as it enters reticulocytes to find potential new therapeutic targets.  One such target is the transferrin receptor which brings circulating iron into red blood cells.  Targeting the transferrin receptor is difficult because of the body’s need for iron.  However, in keeping with this theory, the multitude of receptors the organism uses and has become of interest to cancer researchers.  One group of collaborators in both the United States and abroad, have found commonality between placental tissues and cancer by way of the malarial parasite.  Both cell types express a type of sugar molecule that may be a future potential for broad cancer therapies.

It is well known that the Plasmodium parasite can affect the placenta during pregnancy.  The organism replicates within an infected erythrocyte and because of that infection, the red blood cell becomes a target for clearance through the host spleen.  The organism has developed a variation over time to express an adhesion molecule on the cellular surface of infected cells to remain in the body and avoid destruction.  The protein, VAR2CSA, binds exclusively to placental chondroitin sulfate (pl-CS) which is thought to contribute to the ability of early fetal cells, trophoblasts, to invade the uterine tissue and quickly replicate as part of the implantation process.  The researchers postulated that this mechanism of proliferation is similar to tumor development; perhaps tumors express similar pl-CS protein structures to which recombinant cells with VAR2CSA proteins could help target. 

The researchers found that the VAR2CSA expressing P. falciparum infected cells bind to human cancer cells in vitro; these same cells did not bind to normal healthy cells.  The group created a recombinant variant expressing VAR2CSA (rVAR2) which bound both human and murine placental tissue.  This rVAR2 was also shown to bind to cancer cells lines of hematopoietic, epithelial, and mesenchymal origin at a rate of 95%.  The study outlined the findings that pl-CS is widely expressed in human cancers.  In animal trials, the group demonstrated that an rVAR2 drug targeted non-Hodgkin’s lymphoma tumors, and a percentage of mice with prostate and metastatic breast cancer tumors were cured a month after receiving the experimental treatment. 

Translating findings from animal to human trials can be complicated but the findings are encouraging because the data demonstrate the potential for exploiting the CS chain present in different cancer cell lines as a therapeutic target.  In addition, rVAR2 could facilitate anti-cancer medicines directly to the tumor without damaging healthy tissues.  

Sources: Cancer Cell, Science, Infectious Diseases of Poverty, IFL Science,

About the Author
  • Mauri S. Brueggeman is a Medical Laboratory Scientist and Educator with a background in Cytogenetics and a Masters in Education from the University of Minnesota. She has worked in the clinical laboratory, taught at the University of Minnesota, and been in post secondary healthcare education administration. She is passionate about advances and leadership in science, medicine, and education.
You May Also Like
NOV 14, 2018
Cancer
NOV 14, 2018
How Cancer's 'Invisibility Cloak' Works
One of cancer’s cunning strategies to evade death is to make itself invisible to the immune system. Now researchers say they’ve identified the...
JUL 18, 2018
Immunology
JUL 18, 2018
Immunotherapy Increases Survival of Melanoma Brain Metastases Patients
Use of Checkpoint Blockade Immunotherapy increases survival rates in Melanoma Brain Metastases patients, with a 4-year survival rate increase from 11.1% to 28.1%...
AUG 07, 2018
Cancer
AUG 07, 2018
Is There a Best Time of Day to Administer Chemo?
A common hematologic cancer chemotherapy agent is looked at for its efficacy on solid tumors and specifically evaluates if delivery time during the day affects is anti-tumor activity....
OCT 21, 2018
Technology
OCT 21, 2018
New Technology Detects Early-Stage Lung Cancer
According to recent research published in the Journal of Molecular Diagnostics, outcomes of patients with non-small-cell lung carcinoma (NSCLC) may be impr...
OCT 29, 2018
Neuroscience
OCT 29, 2018
Gut: a second brain and novel therapeutic target
Undersatnding the role of gut microbiome in disease pathologies and targetting them for potential treatment strategies....
DEC 11, 2018
Immunology
DEC 11, 2018
Penetrating Brain Tumors
A team of researchers reveals potential targets for glioma tumors....
Loading Comments...