MAY 21, 2018 5:05 AM PDT

Malarial Organism Characteristics Leads Researchers To Potential Cancer Therapeutic Target

WRITTEN BY: Mauri Brueggeman

The malaria parasite, Plasmodium falciparum, is dangerous and a public health concern in Africa.  According to sources, malaria infection kills nearly a million people per year with many of those being children in Africa.  P. falciparum is not the only species to cause disease, however. Plasmodium vivax is a less deadly species more common to areas beyond Africa.  There’s been a number of scientists focused on how to target the organism to treat and ultimately prevent illness.

The parasite is also adapting to become resistant to first line drugs currently on the market.  Researchers in Australia utilized the mechanism of the parasite as it enters reticulocytes to find potential new therapeutic targets.  One such target is the transferrin receptor which brings circulating iron into red blood cells.  Targeting the transferrin receptor is difficult because of the body’s need for iron.  However, in keeping with this theory, the multitude of receptors the organism uses and has become of interest to cancer researchers.  One group of collaborators in both the United States and abroad, have found commonality between placental tissues and cancer by way of the malarial parasite.  Both cell types express a type of sugar molecule that may be a future potential for broad cancer therapies.

It is well known that the Plasmodium parasite can affect the placenta during pregnancy.  The organism replicates within an infected erythrocyte and because of that infection, the red blood cell becomes a target for clearance through the host spleen.  The organism has developed a variation over time to express an adhesion molecule on the cellular surface of infected cells to remain in the body and avoid destruction.  The protein, VAR2CSA, binds exclusively to placental chondroitin sulfate (pl-CS) which is thought to contribute to the ability of early fetal cells, trophoblasts, to invade the uterine tissue and quickly replicate as part of the implantation process.  The researchers postulated that this mechanism of proliferation is similar to tumor development; perhaps tumors express similar pl-CS protein structures to which recombinant cells with VAR2CSA proteins could help target. 

The researchers found that the VAR2CSA expressing P. falciparum infected cells bind to human cancer cells in vitro; these same cells did not bind to normal healthy cells.  The group created a recombinant variant expressing VAR2CSA (rVAR2) which bound both human and murine placental tissue.  This rVAR2 was also shown to bind to cancer cells lines of hematopoietic, epithelial, and mesenchymal origin at a rate of 95%.  The study outlined the findings that pl-CS is widely expressed in human cancers.  In animal trials, the group demonstrated that an rVAR2 drug targeted non-Hodgkin’s lymphoma tumors, and a percentage of mice with prostate and metastatic breast cancer tumors were cured a month after receiving the experimental treatment. 

Translating findings from animal to human trials can be complicated but the findings are encouraging because the data demonstrate the potential for exploiting the CS chain present in different cancer cell lines as a therapeutic target.  In addition, rVAR2 could facilitate anti-cancer medicines directly to the tumor without damaging healthy tissues.  

Sources: Cancer Cell, Science, Infectious Diseases of Poverty, IFL Science,

About the Author
  • Mauri S. Brueggeman is a Medical Laboratory Scientist and Educator with a background in Cytogenetics and a Masters in Education from the University of Minnesota. She has worked in the clinical laboratory, taught at the University of Minnesota, and been in post secondary healthcare education administration. She is passionate about advances and leadership in science, medicine, and education.
You May Also Like
DEC 21, 2019
Cancer
DEC 21, 2019
Processed meats containing nitrites linked to cancer
Since 2015, when the World Health Organization (WHO) classified processed meats as Group 1 carcinogens, science has supported the idea that these foods pos...
DEC 23, 2019
Technology
DEC 23, 2019
Can Artifical Intelligence Detect Leukemia?
Artificial intelligence has always been a hot topic of discussion in the medical sciences with a whirlwind of applications. However, know the latest curios...
JAN 15, 2020
Clinical & Molecular DX
JAN 15, 2020
Laser microchip picks up cancer markers in urine
A future where patients no longer need to endure expensive, painful and complicated cancer tests could soon become a reality. Researchers have developed a...
JAN 15, 2020
Cell & Molecular Biology
JAN 15, 2020
Cell Division Research Reveals More About a Protein That's Elevated in Cancer
Cell division is a carefully regulated process, cancer is the result when it gets out of control....
JAN 20, 2020
Neuroscience
JAN 20, 2020
Ovarian Cancer Protein Accelerates Alzheimer's Neurodegeneration
Around 21,000 people in the US are diagnosed with ovarian cancer every year, while an estimated 5.8 million Americans have Alzheimer’s. Now, research...
JAN 21, 2020
Cancer
JAN 21, 2020
A gene for leukemia triggers the growth of stem blood cells
New research from the University of Colorado Cancer Center has identified a way to make hematopoietic stem cells from a gene that causes a type of leukemia...
Loading Comments...