DEC 17, 2013 12:00 AM PST

Your Amazing Adjustable Heart

WRITTEN BY: Jen Ellis
The construction of any pump is important to get optimal performance-and the same is true for the most important pump you have, your heart. However, your heart has an amazing property that your average hardware-store pump does not. It partially adjusts to changes in the heart's collagen surroundings to try to keep your heartbeat near the optimal 60 beats per minute, according to University of Pennsylvania researchers. Their study, recently published in Current Biology, explored the collagen environment of the heart and its ability to maintain a standard heartbeat as the nature of the collagen framework changes.

With apologies to Goldilocks, the heart is optimized in a collagen framework that is not too hard or too soft, but "just right." If it's too soft, there isn't enough force generated to pump blood; if it's too hard the strain on the heart is excessive and the heart will stop beating. Understanding the effects of an altered collagen environment can lead to improved treatment plans after a heart attack, since the subsequent scarring in the area will stiffen collagen.

To test the effects of both high and low levels of stiffness in the collagen matrix, the researchers used embryonic-stage chicken hearts (as they are reasonably similar to human hearts). The collagen surrounding the hearts was either softened or stiffened via chemical treatment, and resulting differences in heartbeats were measured by observing cells with fluorescent markers through a microscope. In either case, the heartbeats were decreased.

When comparing the embryonic hearts at different stages in the growth cycle, the optimum stiffness for the collagen matrix increased. Effectively, as the heart matures, the surrounding collagen stiffens, and the heart is adjusting other factors to match the needed force and maintain the optimum heartbeat-turning up the dial on the pump, so to speak.

This effect is achieved through myosin-proteins that contract the heart muscle and produce the pumping action. As the collagen framework stiffens during the maturation process of the heart, the concentration of myosin increases accordingly. This matches the contracting force needed to keep blood pumping at a normal rate and keeps everything "just right".

Further research showed that the same mechanism works on an individual cell level, and did so with heart cells derived from stem cells (as well as a standard heart cell). This has implications for treatment of damaged heart tissue. It may be possible in the future to grow replacement heart tissue from stem cells in a media optimized for the correct stiffness, and replace only the damaged tissue in those who have suffered a heart attack. This, in turn, puts less strain on the previously damaged heart and should decrease the risk of further damage.

To reach this point, scientists need a more comprehensive understanding of the heart's reaction to manipulation of the collagen framework. Since the heart is always attempting to find that "just right" balance of forces to keep blood pumping at a normal rate, it's important to make sure there are not unintended consequences of altering the stiffness of surrounding tissue. In other words, do the adjustment mechanisms of the developing heart still apply to a fully developed heart that has suffered tissue damage from a heart attack? Are there subtle differences in the mechanisms? These questions have yet to be fully answered, but the research to date shows promise for future treatment options.
About the Author
You May Also Like
AUG 14, 2020
Cancer
Controlling Tumor Blood Flow to Increase Therapy Effectiveness
AUG 14, 2020
Controlling Tumor Blood Flow to Increase Therapy Effectiveness
Nowadays, most cancer drugs target a protein or inhibit a critical cellular process. Modern therapies have varying level ...
SEP 17, 2020
Cardiology
Can Grape Polyphenol Extracts prevent Cardiotoxicity?
SEP 17, 2020
Can Grape Polyphenol Extracts prevent Cardiotoxicity?
One of the biggest issues with chemotherapy treatments is their inherent toxicities. Most chemotherapy drugs are toxic t ...
SEP 22, 2020
Cardiology
Mosquito-Borne Illnesses are Linked to Stroke
SEP 22, 2020
Mosquito-Borne Illnesses are Linked to Stroke
Mosquitoes are major disease vectors; they are considered the world's deadliest animal because they kill so many people.
OCT 21, 2020
Cell & Molecular Biology
Extracellular Vesicles Help Heart Cells Survive a Heart Attack
OCT 21, 2020
Extracellular Vesicles Help Heart Cells Survive a Heart Attack
During a heart attack, blood flow is blocked and cells lose oxygen and begin to die. Scientists are developing many new ...
NOV 03, 2020
Cardiology
The Right Diet Can Help Heart Health & Lower Inflammation
NOV 03, 2020
The Right Diet Can Help Heart Health & Lower Inflammation
Most people know that certain foods are better for our health than others. Some types of food can increase, while other ...
JAN 13, 2021
Cardiology
Short Bursts of Exercise Boost Markers of Good Health
JAN 13, 2021
Short Bursts of Exercise Boost Markers of Good Health
Exercise is good for our health, but it seems that certain kinds of exercise are more beneficial than others. Recent res ...
Loading Comments...