JAN 27, 2016 08:16 AM PST

Preventing Heart Failure After Acute Myocardial Infarction

WRITTEN BY: Kara Marker
Acute myocardial infarction (AMI) leads to lethal cardiac failure after oxygen depletion in the heart exceeds a “critical threshold” required for healthy cellular repair mechanisms. Without ample blood supply to the heart, heart cells either die or are damaged irreversibly (Cleveland Clinic).
 
Scientists from Osaka University, in their recent Hypertension paper, investigated ways to prevent cardiac failure from AMI, focusing on periostin, a group of extracellular matrix proteins (Gene ID).
 
After AMI starts to develop, fibroblasts secrete periostin to heal and regenerate damaged tissue. However, the team from Osaka confirmed that “cell adhesion inhibition” of periostin1 actually causes damage to myocardial cells, promotes myocyte death, and exacerbates the conditions leading to heart failure.
 

A treatment that inhibits periostin proteins seemed to be the answer to reducing heart failure risk, but the results from that treatment were twofold. Without periostin1, heart failure following AMI was suppressed, but death from cardiac rupture following AMI increased.
 
The team from Osaka identified this effect as a result of differing functions among periostin variants. While periostin1 leads to cardiac failure outcomes, periostin2 and periostin4 actually have cardioprotective effects:
  • Myocardial regeneration
  • Angiogenesis
  • Protection from cardiac rupture after AMI
Subsequently, their most successful treatment for preventing cardiac failure after AMI inhibited periostin1 without inhibiting periostin2 and periostin4. The treatment was developed with periostin variant-specific neutralizing antibodies.
 
This new therapeutic method provides patients with an improved quality of life as well as decreases medical spending on cardiac failure treatment.
 
 
Source: Osaka University
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
NOV 18, 2019
Cardiology
NOV 18, 2019
Beyond Annoying, Noise Is Bad For Your Health
Peace and quiet are hard to come by these days. Cities are rife with noise pollution from a significant number of sources. Everything from automotive traff...
NOV 18, 2019
Health & Medicine
NOV 18, 2019
Glue, It's What Keeps A Heart Together
If you’ve ever had a cavity filled at the dentist, you know the steps. First goes in the filling, followed by a wand of UV light to harden the materi...
NOV 18, 2019
Cardiology
NOV 18, 2019
The Best Way to Test Blood Pressure and Find Heart Disease
Heart disease causes hundreds of thousands of deaths annually -- can a new study on blood pressure tests guide doctors toward earlier diagnosis? About one ...
NOV 18, 2019
Drug Discovery & Development
NOV 18, 2019
Drug Reduces Heart Attacks in Diabetic Patients
Recent results from a clinical trial that evaluated the addition of a drug called ‘ticagrelor’ to aspirin were shown to improve clinical outcom...
NOV 18, 2019
Cardiology
NOV 18, 2019
The WHO Reemphasizes The Importance Of Nutrition
Nutrition lies at the foundation of good health. Without adequate nutrients, people are at substantially elevated risk for developing health problems. The...
NOV 18, 2019
Cardiology
NOV 18, 2019
What is Polycythemia Vera?
Polycythemia Vera (PV) is a slow-growing cancer of the blood. The cancer is characterized by an overproduction of blood cells within the bone marrow. Too m...
Loading Comments...