JUN 02, 2016 9:58 AM PDT

A Concoction of Cells and Genes to Repair Damaged Heart Muscle

WRITTEN BY: Kara Marker
A heart attack creates a state of inadequate blood supply to organs and tissues that damages heart function and forms scar tissue for many weeks after the event. Using a pre-clinical heart attack model in mice, researchers from the University of Utah tested multiple combinations of stem cells, plasmid-based genes, and growth factors to see which concoctions created effective treatments for different conditions induced by a heart attack.

The researchers looked at three types of cells:
  • Umbilical cord-derived sub-epithelial cells (UC-SECs),
  • Bone marrow-derived mesenchymal stem cells (BM-MSCs),
  • Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs),
two types of plasmid-based genes:
  • S100a1,
  • SDF-1a,
and a growth factor, VEGF165.

To mimic the biological and physiological aspects of heart muscle ischemia when the blood supply to the heart is obstructed as in during a heart attack, the researchers performed left anterior descending artery ligation on the mice models of disease. This technique is commonly used to imitate the impact of a heart attack on the body. With a single stich, researchers can tie off, or ligate, a blood vessel creating a state of inadequate blood supply to the heart that is almost immediately evident. After this procedure, the researchers could freely test different therapeutics to see what effect they had on the condition of the mice hearts.
 
The tissue-based cells were expanded under hypoxic conditions before injection, meaning they were deprived of adequate oxygen supply. The researchers injected each combination of cells, genes, and/or growth factor intramyocardially, and followed up at 4 and 12 weeks post-injection.
Intramyocardial Injection
After measuring, analyzing, and comparing measurements of echocardiography, hemodynamic catheterization measurements and histology throughout the study, the researchers saw several trends where certain therapeutic injections were best suited for correcting specific heart conditions that follow a heart attack.
 
First, UC-SECs appeared to be the best candidate for scar remodeling, but the two plasmid-based genes also proved to be better for scar remodeling than controls and other genes, cells, and growth factor combinations.
 
iPSC-CMs and S100a genes equally improved contractile function the best out of the samples tested, followed by UC-SECs. Lastly, angiogenesis, the creation of new blood vessels, was most successful when treated with VEGF165.
 
Study co-author Dr. Amit N. Patel said the study “demonstrated that, depending on which aspect of cardiac recovery is being evaluated, scar remodeling, improvement in contractile function, angiogenesis, or inflammation, a different [gene or cell] may be best suited.”
 
Indeed, this study provided background knowledge for further development of cellular and genetic therapies for preserving cardiac function. Presently, there is no approved therapy to address scar remodeling or replacement with fresh cardiomyocytes.
 
In conclusion, the researchers recommended that “further studies should aim to evaluate dose and combination therapies in order to decipher the most clinically applicable treatment.”
 
Their study was recently published in the journal Cell Transplantation.
 
 
Sources: Cell Transplantation Center of Excellence for Aging and Brain Repair, Journal of Visualized Experiments
About the Author
I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 08, 2022
Cardiology
Poor Sleep May Nearly Triple Heart Disease Risk
MAR 08, 2022
Poor Sleep May Nearly Triple Heart Disease Risk
Poor sleep has many negative consequences, including a serious impact on heart health.
APR 06, 2022
Technology
Mobile App Predicts Genetic Risks for Coronary Artery Disease
APR 06, 2022
Mobile App Predicts Genetic Risks for Coronary Artery Disease
Coronary artery disease(CAD) is the most common form of heart disease, affecting about 18 million adult Americans each y ...
APR 26, 2022
Cardiology
Another Study Shows Alcohol Is Bad for the Heart
APR 26, 2022
Another Study Shows Alcohol Is Bad for the Heart
Several recent studies have shown that any amount of alcohol consumption raises cardiovascular disease risk.
APR 28, 2022
Cardiology
Stay Hydrated to Reduce Heart Failure Risk
APR 28, 2022
Stay Hydrated to Reduce Heart Failure Risk
Another reason to stay hydrated!
JUN 07, 2022
Cardiology
Overtraining Negatively Impacts Mood and Heart Rate Variability
JUN 07, 2022
Overtraining Negatively Impacts Mood and Heart Rate Variability
Athletes tend to have a worse mood and lower heart rate variability the day after intense training.
JUL 05, 2022
Cardiology
Certain Gut Bacteria Make Blood Pressure Drugs Less Effective
JUL 05, 2022
Certain Gut Bacteria Make Blood Pressure Drugs Less Effective
A new study has shown that gut bacteria reduce the effectiveness of some blood pressure medications.
Loading Comments...