JUN 02, 2016 9:58 AM PDT

A Concoction of Cells and Genes to Repair Damaged Heart Muscle

WRITTEN BY: Kara Marker
A heart attack creates a state of inadequate blood supply to organs and tissues that damages heart function and forms scar tissue for many weeks after the event. Using a pre-clinical heart attack model in mice, researchers from the University of Utah tested multiple combinations of stem cells, plasmid-based genes, and growth factors to see which concoctions created effective treatments for different conditions induced by a heart attack.

The researchers looked at three types of cells:
  • Umbilical cord-derived sub-epithelial cells (UC-SECs),
  • Bone marrow-derived mesenchymal stem cells (BM-MSCs),
  • Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs),
two types of plasmid-based genes:
  • S100a1,
  • SDF-1a,
and a growth factor, VEGF165.

To mimic the biological and physiological aspects of heart muscle ischemia when the blood supply to the heart is obstructed as in during a heart attack, the researchers performed left anterior descending artery ligation on the mice models of disease. This technique is commonly used to imitate the impact of a heart attack on the body. With a single stich, researchers can tie off, or ligate, a blood vessel creating a state of inadequate blood supply to the heart that is almost immediately evident. After this procedure, the researchers could freely test different therapeutics to see what effect they had on the condition of the mice hearts.
 
The tissue-based cells were expanded under hypoxic conditions before injection, meaning they were deprived of adequate oxygen supply. The researchers injected each combination of cells, genes, and/or growth factor intramyocardially, and followed up at 4 and 12 weeks post-injection.
Intramyocardial Injection
After measuring, analyzing, and comparing measurements of echocardiography, hemodynamic catheterization measurements and histology throughout the study, the researchers saw several trends where certain therapeutic injections were best suited for correcting specific heart conditions that follow a heart attack.
 
First, UC-SECs appeared to be the best candidate for scar remodeling, but the two plasmid-based genes also proved to be better for scar remodeling than controls and other genes, cells, and growth factor combinations.
 
iPSC-CMs and S100a genes equally improved contractile function the best out of the samples tested, followed by UC-SECs. Lastly, angiogenesis, the creation of new blood vessels, was most successful when treated with VEGF165.
 
Study co-author Dr. Amit N. Patel said the study “demonstrated that, depending on which aspect of cardiac recovery is being evaluated, scar remodeling, improvement in contractile function, angiogenesis, or inflammation, a different [gene or cell] may be best suited.”
 
Indeed, this study provided background knowledge for further development of cellular and genetic therapies for preserving cardiac function. Presently, there is no approved therapy to address scar remodeling or replacement with fresh cardiomyocytes.
 
In conclusion, the researchers recommended that “further studies should aim to evaluate dose and combination therapies in order to decipher the most clinically applicable treatment.”
 
Their study was recently published in the journal Cell Transplantation.
 
 
Sources: Cell Transplantation Center of Excellence for Aging and Brain Repair, Journal of Visualized Experiments
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 11, 2020
Cardiology
Investigating the Link Between a Kidney Protein and Hypertension
AUG 11, 2020
Investigating the Link Between a Kidney Protein and Hypertension
Hypertension, or high blood pressure, is a common cardiovascular condition with plenty of treatment options and preventi ...
AUG 13, 2020
Cardiology
Using Artificial Intelligence to Read Your ECG Results
AUG 13, 2020
Using Artificial Intelligence to Read Your ECG Results
An electrocardiogram (ECG) is a tool used to measure the heartbeat using an electrical current. By following the current ...
AUG 14, 2020
Cancer
Controlling Tumor Blood Flow to Increase Therapy Effectiveness
AUG 14, 2020
Controlling Tumor Blood Flow to Increase Therapy Effectiveness
Nowadays, most cancer drugs target a protein or inhibit a critical cellular process. Modern therapies have varying level ...
OCT 01, 2020
Cardiology
Investigating Inflammation in Coronary Artery Bypass Grafts
OCT 01, 2020
Investigating Inflammation in Coronary Artery Bypass Grafts
The heart is a vital part of the body that can last one hundred years, yet even a small change can cause massive consequ ...
OCT 14, 2020
Immunology
Happiness Linked to Heart Attack Risk
OCT 14, 2020
Happiness Linked to Heart Attack Risk
Asking patients questions about their personal lives could predict their future risk of a heart attack. A study, publish ...
NOV 16, 2020
Cardiology
High Doses of Fish Oil Don't Reduce Risk of Cardiac Events
NOV 16, 2020
High Doses of Fish Oil Don't Reduce Risk of Cardiac Events
Many people take fish oil supplements to try to improve various aspects of their health, but new work from the Cleveland ...
Loading Comments...