JAN 25, 2017 2:23 PM PST

"Optical Tweezers" Reveal Heart Muscle Network

WRITTEN BY: Kara Marker

A unique new study incorporated laser beams to study the cohesion between two proteins that provide a structural foundation for the body’s muscles, including the heart. From the Technical University of Munich, researchers introduce their “optical tweezers.”

The study focused on measuring the forces between two cardiac muscle-stabilizing building blocks: titin and alpha-actinin. "There must be forces that stabilize the individual chains, the filaments,” said Professor Matthias Rief. “Otherwise, muscles would fall apart. But, until now, nobody has tracked down the source of these forces.”

Marco Grison uses 'optical tweezers' to measure the forces between the protein molecules. Source: Uli Benz / TUM

Titin, the longest protein in the human body, pairs with alpha-actinin, which anchors titin to the muscle tissue. This bond allows expansion but prevents the muscle from destroying itself in the process. For every titin strand, there are seven alpha-actinin proteins providing a foundation, a finding made by the University of Vienna scientists with which the Munich researchers were collaborating.

"In total, the bonds are sufficient to stabilize the muscle," Rief explained. "The protein network is not only stable, but also extremely dynamic. Our measurements show that the proteins release their bond when they are pulled apart. But as soon as the stretching force abates they reconnect."

Their unique tool dubbed “optical tweezers” includes lasers, optics, cameras, and monitors to observe titin and alpha-actinin in action. Doctoral student Marco Grison explains the process:

"Using the laser beams we can position the globules close enough to each other that the two proteins can interlink. In a second step, we increase the distance between the laser beams and, thereby, between the globules, until the proteins are stretched to their limit. The bonding force between titin and α-actinin can then be calculated from this distance."

Two laser beams hold tiny glass beads in a position very close to each other. One end of the protein complex is fixed on the surface of the left brad, the other end on the right. If the laser moves the glass beads apart, the protein molecules are forced to stretch and the forces can be measured. Credit: Marco Grison / TUM

The optical tweezers helped the researchers discover that the protein bond between titin and alpha-actinin can resist a force of five piconewtons, also one-billionth the weight of a bar of chocolate. "Such small forces should not be able to hold a muscle together for long,” Rief explained. 

It’s not just the heart that’s benefiting from the complex bond between titin and alpha-actinin. The pair provides a structural foundation for all stretching muscles. In the future, Rief and his team anticipate applying their research to developing treatments for genetic diseases like muscular dystrophy and congestive heart failure.

Rief's study was recently published in the Proceedings of the National Academy of Sciences.

Source: Technical University of Munich

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JAN 29, 2020
Cardiology
JAN 29, 2020
Eating Eggs Everyday Not Linked to Heart Disease
The common controversy over whether eating eggs is bad for heart health may finally have been dissolved thanks to new fi ...
FEB 21, 2020
Clinical & Molecular DX
FEB 21, 2020
Diagnosing COVID-19
Diagnosing coronavirus is done through next-generation sequencing, real-time RT-PCR tests, cell culture, and electron mi ...
MAR 19, 2020
Cardiology
MAR 19, 2020
Listening to Music Reduces Risk for Repeat Heart Attack
Around 700,000 people survive a heart attack in the US each year, with approximately 1 in 9 of these survivors experienc ...
MAR 20, 2020
Cardiology
MAR 20, 2020
Exercise For Persons With COPD
The thought of starting an exercise program can be daunting, particularly for those who have been diagnosed with chronic ...
MAR 11, 2020
Neuroscience
MAR 11, 2020
Categories of Memory Work Together to Form Abstract Thought
Indiana University New research from the University of Trento shows how areas of the brain work to recall complex semant ...
MAR 28, 2020
Cardiology
MAR 28, 2020
Daily Hot Bath May Reduce Risk for Heart Disease and Stroke
The Japanese are known for their fondness of long hot baths- be it in their famous onsens, public baths or even just the ...
Loading Comments...