JAN 25, 2017 2:23 PM PST

"Optical Tweezers" Reveal Heart Muscle Network

WRITTEN BY: Kara Marker

A unique new study incorporated laser beams to study the cohesion between two proteins that provide a structural foundation for the body’s muscles, including the heart. From the Technical University of Munich, researchers introduce their “optical tweezers.”

The study focused on measuring the forces between two cardiac muscle-stabilizing building blocks: titin and alpha-actinin. "There must be forces that stabilize the individual chains, the filaments,” said Professor Matthias Rief. “Otherwise, muscles would fall apart. But, until now, nobody has tracked down the source of these forces.”

Marco Grison uses 'optical tweezers' to measure the forces between the protein molecules. Source: Uli Benz / TUM

Titin, the longest protein in the human body, pairs with alpha-actinin, which anchors titin to the muscle tissue. This bond allows expansion but prevents the muscle from destroying itself in the process. For every titin strand, there are seven alpha-actinin proteins providing a foundation, a finding made by the University of Vienna scientists with which the Munich researchers were collaborating.

"In total, the bonds are sufficient to stabilize the muscle," Rief explained. "The protein network is not only stable, but also extremely dynamic. Our measurements show that the proteins release their bond when they are pulled apart. But as soon as the stretching force abates they reconnect."

Their unique tool dubbed “optical tweezers” includes lasers, optics, cameras, and monitors to observe titin and alpha-actinin in action. Doctoral student Marco Grison explains the process:

"Using the laser beams we can position the globules close enough to each other that the two proteins can interlink. In a second step, we increase the distance between the laser beams and, thereby, between the globules, until the proteins are stretched to their limit. The bonding force between titin and α-actinin can then be calculated from this distance."

Two laser beams hold tiny glass beads in a position very close to each other. One end of the protein complex is fixed on the surface of the left brad, the other end on the right. If the laser moves the glass beads apart, the protein molecules are forced to stretch and the forces can be measured. Credit: Marco Grison / TUM

The optical tweezers helped the researchers discover that the protein bond between titin and alpha-actinin can resist a force of five piconewtons, also one-billionth the weight of a bar of chocolate. "Such small forces should not be able to hold a muscle together for long,” Rief explained. 

It’s not just the heart that’s benefiting from the complex bond between titin and alpha-actinin. The pair provides a structural foundation for all stretching muscles. In the future, Rief and his team anticipate applying their research to developing treatments for genetic diseases like muscular dystrophy and congestive heart failure.

Rief's study was recently published in the Proceedings of the National Academy of Sciences.

Source: Technical University of Munich

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JUN 19, 2019
Genetics & Genomics
JUN 19, 2019
Genetic Link to Heart Disease is Stronger Than Thought
Previous work did not look at the impact of small changes in regulatory genes....
JUN 30, 2019
Cardiology
JUN 30, 2019
Opioid Addiction Comes With Increased Risk Of Infection
Public health officials have put decades of work into the battle against infectious diseases. Now, this progress is at risk of being dismantled. A recent s...
JUL 12, 2019
Cardiology
JUL 12, 2019
Many Cardiac Interventions Not Proven Beneficial
Doctors have recommended numerous interventions to combat heart disease. With heart disease killing more people in the United States than anything else, th...
SEP 04, 2019
Drug Discovery & Development
SEP 04, 2019
Re-Evaluating a Popular Heart Failure Drug
A recent study found that the popular heart drug--sacubitril/valsartan—holds positive effects on the structure and function of the failing heart. Spe...
SEP 10, 2019
Genetics & Genomics
SEP 10, 2019
Gene Mutations Link Flu Infections and Heart Trouble
Sometimes people develop life-threatening heart complications when they're infected with the flu....
NOV 20, 2019
Cardiology
NOV 20, 2019
Americans Continue to Gain Weight Despite Increased Weight loss Efforts
Body mass index (BMI) is an important health measure. BMI is defined by the Centers for Disease Control and Prevention (CDC) as “a person's weigh...
Loading Comments...