FEB 06, 2017 7:03 AM PST

Tiny needle tests voltage of beating cardiac cells

Image Credit: arboreus/Flickr

Researchers have developed a new way to measure the electrical impulses of beating cardiac cells.

The technique, which involves an atomic force microscope and a tiny needle, could pave the way for an automated method to test any cell, regardless of its shape or size.

Electrical impulses play an important role in cells of the human body. For example, neurons use these impulses to transmit information along their branches and the body also uses them to control the contraction of muscles.

The impulses are generated when special channel proteins open in the outer envelope of the cells, allowing charged molecules (ions) to enter or exit the cell. These proteins are referred to as ion channels.

Since the 1970s, researchers have used a specific technique to measure the activity of these channels, but until now this method has been used primarily on cells that do not move.

Electrical engineers at ETH Zurich and biologists from the University of Bern have now developed the method further, so that they can easily record the activity of moving cells, such as beating cardiac muscle cells in a tissue culture dish.

How the previous method works

The existing method involves positioning a glass pipette against the outer membrane of a cell. The opening at the tip of the pipette is so small that it touches only a fraction of the cell surface. Ideally, this tiny patch of cell membrane has exactly one ion channel.

The inside of the pipette is filled with a conductive fluid and an electrode, which makes it possible to measure differences in the charge between the outer part of the cell and cell interior (i.e. an electric potential ) and temporary changes in this potential resulting from activity in the ion channels.

The method is referred to as the patch-clamp technique because the pipette is used to clamp a patch of the cell membrane.

Atomic force microscope

Lead by Tomaso Zambelli, a lecturer at the Institute of Biomedical Engineering at ETH Zurich, and Hugues Abriel, a professor at the clinical research department at the University of Bern, the researchers have now combined this technique with an atomic force microscope.

A sensor tip is seated on a movable mount–a so called cantilever–to scan the surface of the microscopic object.

Several years ago, the researchers succeeded in producing sensor tips with an internal channel, which allows the computer-controlled injection of molecules into a cell. This technique is now being marketed by the ETH spin-off Cytosurge.

However, the scientists continued development of this technique by fitting the micro-injection needle with an electrode to carry out patch-clamp measurements. The successful results of this work were published recently in the journal Nano Letters.

Testing new drugs

The patch-clamp technique is not only a central method for basic research in cell biology, it is also used routinely in the development of new drugs. For example, the pharmaceutical industry is legally required as part of the approval process for new drugs to test whether these drugs interact with ion channels.


A drug that blocks ion channels may cause severe cardiac dysrhythmia in patients, which should be avoided at all costs.

In the case of the conventional patch-clamp technique, an operator manually positions the pipette against the cell; although automated procedures exists, their applications are limited. That means the cells under test must have the same size and shape and must not move (as cardiac cells do).

In the case of the new method, the micro-needle is controlled by a computer using force measurements from the atomic force microscope to hold it at a constant short distance from the cell surface.

“This makes the contact between the needle and cell much more stable, which allows us to take measurements over a longer period of time and even test moving cells,” explains Zambelli.

Source: ETH Zurich

Original Study DOI: 10.1021/nl504438z

This article was originally published on Futurity.org.

About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
JUN 24, 2019
Genetics & Genomics
JUN 24, 2019
Genetic Predictors of a Failing Heart
Scientists have discovered a gene, PPP1R3A, that may be the ultimate protection against heart failure.  Evidence shows that once this gene turns on, i...
JUL 25, 2019
JUL 25, 2019
Strict Plant Based Diet Benefits Heart Health
Plant-based diets are steadily gaining popularity with the general public. As a wave of interest fuels research into the health benefits of such diets, stu...
SEP 10, 2019
SEP 10, 2019
Hula Dancing Helps Hawaiians Lower Blood Pressure
The rates of stroke and heart disease are about four times higher for Native Hawaiians than for non-Hispanic whites, according to EurekAlert. Can a traditi...
OCT 10, 2019
OCT 10, 2019
Parkinson's Disease is Present in the Blood
Parkinson's disease is a progressive disorder of the nervous system. Often starting with a barely noticeable tremor in one hand, the disease affects a...
OCT 18, 2019
OCT 18, 2019
Find the Motivation to Exercise with Imagery
Those involved in professional sports have a lot on their plate. From fitting in intense regular workouts to getting adequate sleep, to eating a healthy di...
FEB 20, 2020
FEB 20, 2020
Most Commonly Birth Defects Affect The Heart
Birth defects are not uncommon. For every 33 babies born in the United States each year, one is born with a defect. That adds up to about 120,000 babies ea...
Loading Comments...