JUL 24, 2017 7:11 PM PDT

What Happens After Cardiac Arrest?

WRITTEN BY: Kara Marker

For the ten percent of people who survive cardiac arrest, long-term sensory problems are inevitable. That is, unless scientists can come up with a way to revive damaged brain cells.

 

Credit: LSU Health

As opposed to heart attack, a “blood flow problem,” cardiac arrest is an “electrical problem.” The heart stops pumping altogether as a result of an irregular heartbeat, or arrhythmia. No heartbeat means no oxygen to the body’s organs, including the brain. No oxygen in the brain means massive death of neurons, the building blocks of brain function. Some neurons survive if cardiac arrest is addressed in time and the flow of oxygenated blood returns to the brain, but the surviving neurons don’t make it out unscathed.

In 2015, the American Heart Association reported that 10.6 percent of out-of-hospital cardiac arrest patients survive, if treated by emergency medical services (EMS). For those individuals lucky enough to be near a bystander who treated them with an automated external defibrillator (AED) when they experienced cardiac arrest, the survival rate jumped up to 31.4 percent. The more time that passes before a cardiac arrest patient is treated, the more likely they are to face severe consequences, including death.

For the people that do end up surviving cardiac arrest, long-term sensory dysfunction is a serious problem. The part of the brain that is responsible for sensory information is called the cerebral cortex, and it plays a role in a wide range of functions and senses, including vision, hearing, touch, memory, language, creativity, judgment, and emotion. Thus, it’s easy to see how damaged neurons in the cerebral cortex can lead to a handful of irreversible problems in the aftermath of cardiac arrest.

In order to understand the long-term effects of cardiac arrest on the cerebral cortex over time, scientists from the Louisiana State University Health New Orleans School of Medicine studied cardiac arrest in rats.

"Our work characterizes the changes that occur in the sensory cortex after a form of global hypoxic injury in juvenile rats," explained research leader Jason Middleton, PhD. Hypoxic injury describes the damage done to the brain as a result of oxygen deprivation. Middleton and his team saw that the injury was not widespread, but did reflect “decreased ability of the cortex to discriminate sensory stimuli.”

For now, Middleton and the other researchers are just starting to understand how long-term sensory dysfunction develops after cardiac arrest, but they are hopeful that the understanding could lead to an intervention capable of preventing long-term damage, or at least alleviating some of it.

The present study was published in the journal eNeuro.

 

 

Sources: Sudden Cardiac Arrest Foundation, Louisiana State University Health Sciences Center

 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 28, 2021
Genetics & Genomics
Fish Oil Benefits May Depend on a Person's Genetics
MAR 28, 2021
Fish Oil Benefits May Depend on a Person's Genetics
The benefits of fish oil have been debated for years. New research can explain why it's been difficult to reach a solid ...
APR 06, 2021
Cardiology
In 2020, Deaths in the US Were Over 20% Higher Than Typical Years
APR 06, 2021
In 2020, Deaths in the US Were Over 20% Higher Than Typical Years
Researchers have begun to analyze the impact of the pandemic, and their work has shown that long COVID-19 surges in the ...
MAY 02, 2021
Microbiology
Fasting Alters Gut Microbiota, Lowering Blood Pressure
MAY 02, 2021
Fasting Alters Gut Microbiota, Lowering Blood Pressure
Increasingly, microbes in the gut are being linked to human health and disease. New research has suggested that disrupti ...
SEP 01, 2021
Technology
Keep 6 Inches Away: Smartphones and Watches Can Interfere With Implanted Medical Devices
SEP 01, 2021
Keep 6 Inches Away: Smartphones and Watches Can Interfere With Implanted Medical Devices
Recent guidance by the U.S Food and Drug Administration (FDA) recommended that people with implanted medical devices sho ...
SEP 14, 2021
Health & Medicine
A lower sodium diet decreases the chance of stroke and other heart disease
SEP 14, 2021
A lower sodium diet decreases the chance of stroke and other heart disease
A new study found that using a low salt alternative lowered the risk of stroke and other heart disease
SEP 28, 2021
Clinical & Molecular DX
Black College Football Players More at Risk of Heart Conditions
SEP 28, 2021
Black College Football Players More at Risk of Heart Conditions
College football players may have an elevated risk of developing a heart condition where the left side of the heart beco ...
Loading Comments...