JUL 24, 2017 7:11 PM PDT

What Happens After Cardiac Arrest?

WRITTEN BY: Kara Marker

For the ten percent of people who survive cardiac arrest, long-term sensory problems are inevitable. That is, unless scientists can come up with a way to revive damaged brain cells.

 

Credit: LSU Health

As opposed to heart attack, a “blood flow problem,” cardiac arrest is an “electrical problem.” The heart stops pumping altogether as a result of an irregular heartbeat, or arrhythmia. No heartbeat means no oxygen to the body’s organs, including the brain. No oxygen in the brain means massive death of neurons, the building blocks of brain function. Some neurons survive if cardiac arrest is addressed in time and the flow of oxygenated blood returns to the brain, but the surviving neurons don’t make it out unscathed.

In 2015, the American Heart Association reported that 10.6 percent of out-of-hospital cardiac arrest patients survive, if treated by emergency medical services (EMS). For those individuals lucky enough to be near a bystander who treated them with an automated external defibrillator (AED) when they experienced cardiac arrest, the survival rate jumped up to 31.4 percent. The more time that passes before a cardiac arrest patient is treated, the more likely they are to face severe consequences, including death.

For the people that do end up surviving cardiac arrest, long-term sensory dysfunction is a serious problem. The part of the brain that is responsible for sensory information is called the cerebral cortex, and it plays a role in a wide range of functions and senses, including vision, hearing, touch, memory, language, creativity, judgment, and emotion. Thus, it’s easy to see how damaged neurons in the cerebral cortex can lead to a handful of irreversible problems in the aftermath of cardiac arrest.

In order to understand the long-term effects of cardiac arrest on the cerebral cortex over time, scientists from the Louisiana State University Health New Orleans School of Medicine studied cardiac arrest in rats.

"Our work characterizes the changes that occur in the sensory cortex after a form of global hypoxic injury in juvenile rats," explained research leader Jason Middleton, PhD. Hypoxic injury describes the damage done to the brain as a result of oxygen deprivation. Middleton and his team saw that the injury was not widespread, but did reflect “decreased ability of the cortex to discriminate sensory stimuli.”

For now, Middleton and the other researchers are just starting to understand how long-term sensory dysfunction develops after cardiac arrest, but they are hopeful that the understanding could lead to an intervention capable of preventing long-term damage, or at least alleviating some of it.

The present study was published in the journal eNeuro.

 

 

Sources: Sudden Cardiac Arrest Foundation, Louisiana State University Health Sciences Center

 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JUL 16, 2019
Cardiology
JUL 16, 2019
Probiotics For Hypertension May Become Standard
Today, as it is relatively new frontier within scientific research, the role of the microbiome is up for debate. As scientists grow increasingly more inter...
JUL 23, 2019
Cardiology
JUL 23, 2019
Shocking Numbers Of People Self-Prescribing Daily Aspirin
Up until recently, people who were concerned about the possibility of suffering a cardiac event were often advised to take low-dose aspirin daily. Because ...
JAN 09, 2020
Neuroscience
JAN 09, 2020
Increased Autism Risk for Children Born with Heart Disease
Children born with congenital heart disease (CHD) have a life expectancy comparable to that of the general population. However, despite advances in medical...
JAN 15, 2020
Cardiology
JAN 15, 2020
Burnout May Cause Heart Problems
At least 2.7 million Americans are affected by the most common variety of irregular heartbeat, known as atrial fibrillation (AFib). Now, new research has f...
FEB 05, 2020
Cardiology
FEB 05, 2020
Protein-Rich Foods May Damage Heart Health
High-protein diets are becoming more and more popular as a method to both increase muscle mass and lose weight. Now however, new research is showing that e...
FEB 07, 2020
Cardiology
FEB 07, 2020
Eating Red and Processed Meats Increases Heart Disease Risk
Although the link between consuming processed meats and an increased risk of cardiovascular disease (CVD) is well established, studies focusing on the link...
Loading Comments...