FEB 23, 2018 05:33 AM PST

Glowing Proteins Help Scientists Learn from the Embryonic Heart

WRITTEN BY: Kara Marker

How are new heart cells created? Is the adult heart capable of repairing itself after a heart attack? How can scientists intervene to improve recovery? University of California - Los Angeles (UCLA) scientists plan to answer all of these questions, but in their new Nature Communication study, they start with the first query.

Researchers used four different fluorescent-colored proteins to determine the origin of cardiomyocytes in mice. Credit: UCLA Broad Stem Cell Research Center/Nature Communications

A colorful new experiment used fluorescent proteins to study the development of heart muscle cells, called cardiomyocytes, as they grow in mouse embryos. The end game? Regenerate heart tissue in human adults to improve recovery after traumatic cardiac events like heart attack.

"Our ultimate goal is to be able to regenerate cardiomyocytes after an injury like a heart attack," explained Dr. Reza Ardehali. "But we're first trying to learn from the embryonic heart."

Ardehali and the other researchers chose to study cardiomyocytes because they are the main population of cells in the heart negatively impacted by a heart attacking, dying by the masses without an adequate supply of blood carrying oxygen and nutrients.

Cardiomyocytes are replaced, but not by other cardiomyocytes. Scar tissue takes its place, and the heart has to manage its regular duties but with less cells to get the job done. Studies show that in the adult heart, cardiomyocytes do not regenerate themselves; once they’re gone, they’re gone.

The research team from UCLA studied four different fluorescently-colored proteins to learn more about where cardiomyocytes came from in mouse embryos as they grew. Using fluorescent proteins meant that when cells divide, the daughter cells produced as a result maintain the same color. Researchers could easily keep track of the generations.

"Compared to previous labeling methods that use only one or two different colors, this method allows us distinguish the role of different cells much more clearly,” explained co-first author Ngoc Nguyen.

Cardiomyocytes and cardiac progenitor cells were among the types of cells labeled with fluorescent proteins. Progenitor cells are the “early descendents” of cells, capable of differentiating into different cell types. Researchers watched the colors change as they learned more about where cardiomyocytes were being produced during embryonic development.

They found that early in the development process, cardiomyocytes were more likely to originate from cardiac progenitor cells as opposed to other cardiomyocytes. However, cardiac progenitor cells gradually lose their ability to create new cardiomyocytes as development progresses. This is opposed to what scientists previously believed to be an abrupt transition from productive to unproductive progenitor cells.

"If we can determine how these cardiomyocytes proliferate, we hope to harness that regenerative potential for the treatment of heart disease in humans," Nguyen said.

Source: University of California - Los Angeles Health Sciences, Boston Children’s Hospital

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
DEC 03, 2018
Cardiology
DEC 03, 2018
Alcohol Consumption: How Much Is Too Much for the Heart?
  Arteries stiffen over time as a result of aging, but heavy alcohol drinking habits over a lifetime can accelerate arterial aging, especially in men....
JUN 26, 2018
Cardiology
JUN 26, 2018
Micropacemaker Provides New Cardiac Pacing Options
Scientists are working on the world’s first micropacemaker system designed to be implanted in the pericardial sac surrounding the heart. From the Chi...
OCT 24, 2018
Cardiology
OCT 24, 2018
Understanding Complex Heart Defects Like Tetralogy Of Fallot
Defects at birth are common with 3% of children in the United States born with them each year. Of those defects congenital heart defects are the most commo...
OCT 31, 2018
Health & Medicine
OCT 31, 2018
Childhood Obesity Raises Risk of Severe Hip Malformation
Obesity, especially in childhood can create a myriad of health issues that can persist into adulthood. Cardiovascular disease, strokes, hypertension and ev...
NOV 09, 2018
Cardiology
NOV 09, 2018
Lyme Disease And The Heart
In small-town New England, everyone knows the unique characteristic symptom of Lyme disease. A bulls-eye pattern rash around a tiny tick bite, infection gr...
NOV 24, 2018
Genetics & Genomics
NOV 24, 2018
How Fish can Teach us About Mending a Broken Heart
Our world hosts some incredible organisms, some of which might help people create treatments for disease....
Loading Comments...