APR 08, 2015 9:16 AM PDT

Turbo-Charging Hormone Can Regrow the Heart

WRITTEN BY: Judy O'Rourke
Researchers have discovered a way to stimulate muscle regrowth in the heart of a mouse, opening up prospects of new treatments for many who suffer heart attacks each year.

The animal study found it was possible to regenerate muscle cell numbers in the heart by up to 45 percent by ‘turbo-charging' a hormone that helped coordinate cell growth.

According to study lead author, associate professor Richard Harvey, PhD, UNSW, based at the Victor Chang Cardiac Research Institute, New South Wales, Australia, this is an important step toward repairing a broken heart.

"Unlike blood, hair, or skin cells, which can renew themselves throughout life, cell division in the heart virtually comes to a standstill shortly after birth, which means the heart can't fully regenerate if it is damaged later in life," Harvey says.

"Previous studies have demonstrated that it is possible to coax heart muscle cells to proliferate again, but only at very trivial levels," he says. "What the research team has been able to do is boost heart muscle cell numbers by as much as 45 percent after a heart attack."

The scientists focused on a signalling system in the heart driven by a hormone called ‘neuregulin'.

By switching the neuregulin pathway to ‘turbo charge', the researchers found that heart muscle cells continued to divide in a spectacular way in both the adolescent and adult periods. Stimulating the neuregulin pathway during a heart attack led to replacement of lost muscle.

"This big achievement will focus the attention of the field on heart muscle cell replacement as a therapeutic option for ischemic heart disease," Harvey says. "The dream is that one day we will be able to regenerate damaged heart tissue, much like a salamander can regrow a new limb if it is bitten off by a predator. Just imagine if the heart could learn to regrow and heal itself. That would be the ultimate prize."

The research, conducted at the Weizmann Institute of Science in collaboration with the Victor Chang Cardiac Research Institute, and titled "ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation," is published in Nature Cell Biology.

[Source: UNSW]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
JUL 18, 2020
Cardiology
Diagnosing Arterial Stenosis with Computational Modeling
JUL 18, 2020
Diagnosing Arterial Stenosis with Computational Modeling
Our understanding of cardiovascular health has increased by leaps and bounds. One of the few issues that lag behind the ...
AUG 14, 2020
Cancer
Controlling Tumor Blood Flow to Increase Therapy Effectiveness
AUG 14, 2020
Controlling Tumor Blood Flow to Increase Therapy Effectiveness
Nowadays, most cancer drugs target a protein or inhibit a critical cellular process. Modern therapies have varying level ...
AUG 23, 2020
Cardiology
Gaining Insight Into a Mysterious Network of Fibers in the Heart
AUG 23, 2020
Gaining Insight Into a Mysterious Network of Fibers in the Heart
Leonardo da Vinci knew about a mesh, fibrous network surrounding the heart, and after hundreds of years, scientists are ...
SEP 21, 2020
Clinical & Molecular DX
Smart Wearable Patch Signals Trouble Following Traumatic Injury
SEP 21, 2020
Smart Wearable Patch Signals Trouble Following Traumatic Injury
An ambulance pulls up to the site of a car accident, sirens blazing. Paramedics assess the crash victims, looking for si ...
NOV 03, 2020
Cardiology
The Right Diet Can Help Heart Health & Lower Inflammation
NOV 03, 2020
The Right Diet Can Help Heart Health & Lower Inflammation
Most people know that certain foods are better for our health than others. Some types of food can increase, while other ...
NOV 12, 2020
Cardiology
Creating a Mouse Model to Test RBM20 Dependent Dilated Cardiomyopathy
NOV 12, 2020
Creating a Mouse Model to Test RBM20 Dependent Dilated Cardiomyopathy
Cardiovascular disease is something that, in most cases, is within our ability to control. A healthy diet and active lif ...
Loading Comments...