APR 24, 2015 7:41 AM PDT

Protein Able to Regulate DNA Repair During Sperm Formation

WRITTEN BY: Judy O'Rourke
Researchers from the Universitat Autònoma de Barcelona (UAB) Department of Cellular Biology, Physiology, and Immunology, and the UAB Institute of Biotechnology and Biomedicine, led by Dr Ignasi Roig, have discovered that the signalling route-a cascade activation of several molecules-triggered by the ATM protein regulates DNA repair during the production of spermatocytes by meiosis, the cell division process which yields spermatozoa.

In experiments conducted with genetically modified mice, researchers observed that when the ATM protein is eliminated, or its activation is reduced, spermatocytes (precursors of spermatozoa) which present breakage in the genome do not block their cellular cycle and therefore do not have the capacity to progress more than normal, given that they do not correctly repair DNA breakage.
This is a spermatocyte through a microscope.
The research shows that these mutations affecting the signalling route which depends on the ATM protein, as well as the drugs inhibiting the function of this signalling route such as some antitumor drugs, could produce infertility problems in humans.

The discovery will allow to delve deeper into the mechanisms regulating the formation of gametes (eggs and sperm).

It is known that the ATM protein is one of the main proteins involved in DNA repair in somatic cells (any of the cells forming part of our organism, except for germline cells). This study, published recently in PLOS Genetics, shows that in the particular case of meiotic cells such as spermatocytes, the signalling route of the ATM protein also participates in the control system of the cell cycle progression in response to DNA damage, something which until now was unknown.

Sexual reproduction requires the fusion of two gametes (egg and sperm) which combine their genetic material to produce an embryo. Therefore, the number of chromosomes of these cells must be reduced by half through a specialized cell division called meiosis.

At the beginning of meiosis, germline cells intentionally generate multiple double chain breakages along the whole DNA genome. The reparation of these DNA breakages, through a process called homologous recombination, allows homologous chromosomes to pair up and guarantee a balanced segregation during the meiotic division and thereby avoid the formation of gametes with an incorrect number of chromosomes which could result in chromosome disorders due to the presence of aneuploids (such as Down's Syndrome and other similar disorders), or in spontaneous abortions.

Since these repair errors in DNA breakage can generate instability in the genome, the process of repairing the breakages is a highly regulated one. It is therefore essential that there be control mechanisms capable of detecting errors in this process and halting the cell cycle with the aim of allowing the cell to repair the breakages or, if not possible, to eliminate the damaged cell.

[Source: Universitat Autònoma de Barcelona]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
AUG 01, 2021
Microbiology
Some Insects Can Fight Off Parasites with Genes From a Virus
AUG 01, 2021
Some Insects Can Fight Off Parasites with Genes From a Virus
The genetic action in this 'evolutionary arms races' involves gene swapping and three organisms.
AUG 08, 2021
Microbiology
Manganese Could be an Achilles' Heel for Some Pneumonia Germs
AUG 08, 2021
Manganese Could be an Achilles' Heel for Some Pneumonia Germs
Researchers recently discovered bacteria that fed on the element manganese. Scientists also know that some bacterial pat ...
AUG 19, 2021
Immunology
Immune Enzyme Kills Viruses but Makes Tumors Stronger
AUG 19, 2021
Immune Enzyme Kills Viruses but Makes Tumors Stronger
Robert Louis Stevenson’s 1886 novel Strange Case of Dr. Jekyll and Mr. Hyde describes a man who is a kind, respect ...
AUG 22, 2021
Genetics & Genomics
A Natural Protein to 'SEND' Gene Editing Cargo to Cells
AUG 22, 2021
A Natural Protein to 'SEND' Gene Editing Cargo to Cells
One of the most difficult aspects of gene therapy might be ensuring that it gets into the right cells safely so it can h ...
AUG 31, 2021
Cell & Molecular Biology
Researchers 3D Print Japanese-Style Beef Steaks
AUG 31, 2021
Researchers 3D Print Japanese-Style Beef Steaks
Agriculture, especially the production of meat, puts tremendous pressure on the environment and is thought to be a major ...
SEP 16, 2021
Immunology
Trapped! An Immune Cell Tag Team Takes Down Bacteria.
SEP 16, 2021
Trapped! An Immune Cell Tag Team Takes Down Bacteria.
Spiders are among nature’s most sophisticated hunters. Many build intricate webs out of silk and lie in wait for a ...
Loading Comments...