APR 24, 2015 07:41 AM PDT

Protein Able to Regulate DNA Repair During Sperm Formation

WRITTEN BY: Judy O'Rourke
2 45 4742
Researchers from the Universitat Autònoma de Barcelona (UAB) Department of Cellular Biology, Physiology, and Immunology, and the UAB Institute of Biotechnology and Biomedicine, led by Dr Ignasi Roig, have discovered that the signalling route-a cascade activation of several molecules-triggered by the ATM protein regulates DNA repair during the production of spermatocytes by meiosis, the cell division process which yields spermatozoa.

In experiments conducted with genetically modified mice, researchers observed that when the ATM protein is eliminated, or its activation is reduced, spermatocytes (precursors of spermatozoa) which present breakage in the genome do not block their cellular cycle and therefore do not have the capacity to progress more than normal, given that they do not correctly repair DNA breakage.
This is a spermatocyte through a microscope.
The research shows that these mutations affecting the signalling route which depends on the ATM protein, as well as the drugs inhibiting the function of this signalling route such as some antitumor drugs, could produce infertility problems in humans.

The discovery will allow to delve deeper into the mechanisms regulating the formation of gametes (eggs and sperm).

It is known that the ATM protein is one of the main proteins involved in DNA repair in somatic cells (any of the cells forming part of our organism, except for germline cells). This study, published recently in PLOS Genetics, shows that in the particular case of meiotic cells such as spermatocytes, the signalling route of the ATM protein also participates in the control system of the cell cycle progression in response to DNA damage, something which until now was unknown.

Sexual reproduction requires the fusion of two gametes (egg and sperm) which combine their genetic material to produce an embryo. Therefore, the number of chromosomes of these cells must be reduced by half through a specialized cell division called meiosis.

At the beginning of meiosis, germline cells intentionally generate multiple double chain breakages along the whole DNA genome. The reparation of these DNA breakages, through a process called homologous recombination, allows homologous chromosomes to pair up and guarantee a balanced segregation during the meiotic division and thereby avoid the formation of gametes with an incorrect number of chromosomes which could result in chromosome disorders due to the presence of aneuploids (such as Down's Syndrome and other similar disorders), or in spontaneous abortions.

Since these repair errors in DNA breakage can generate instability in the genome, the process of repairing the breakages is a highly regulated one. It is therefore essential that there be control mechanisms capable of detecting errors in this process and halting the cell cycle with the aim of allowing the cell to repair the breakages or, if not possible, to eliminate the damaged cell.

[Source: Universitat Autònoma de Barcelona]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
JUN 21, 2018
Immunology
JUN 21, 2018
The Silver Tsunami: An Aging Immune System and Cancer
Why do cases of cancer become more common as we get older? Scientists interested in explaining the so-called “Silver Tsunami” phenomenon look t
JUN 21, 2018
Cell & Molecular Biology
JUN 21, 2018
Are Patterns in Biology Governed by a Turing Theory?
Alan Turing didn't only contribute to computing & mathematics. He also developed a theory about how biological patterns form.
JUL 19, 2018
Cell & Molecular Biology
JUL 19, 2018
Stopping Structural Changes in Collagen may Prevent Lung Fibrosis
Lung fibrosis is a serious condition that thickens tissues in the lungs and makes it hard to breathe.
AUG 06, 2018
Genetics & Genomics
AUG 06, 2018
Mystery Solved: Modern Pygmies not Related to Ancient Ones
The isolation of islands can have a powerful effect on the genetics of the residents.
AUG 09, 2018
Cell & Molecular Biology
AUG 09, 2018
Observing Development at the Cellular Level
A new method can track the formation and movement of lipids, DNA and proteins in live cells.
AUG 11, 2018
Videos
AUG 11, 2018
Hit The Sweet Spot - MIT's Image Awards
MIT researchers are trying to engineer a smarter insulin.
Loading Comments...