APR 24, 2015 7:41 AM PDT

Protein Able to Regulate DNA Repair During Sperm Formation

WRITTEN BY: Judy O'Rourke
Researchers from the Universitat Autònoma de Barcelona (UAB) Department of Cellular Biology, Physiology, and Immunology, and the UAB Institute of Biotechnology and Biomedicine, led by Dr Ignasi Roig, have discovered that the signalling route-a cascade activation of several molecules-triggered by the ATM protein regulates DNA repair during the production of spermatocytes by meiosis, the cell division process which yields spermatozoa.

In experiments conducted with genetically modified mice, researchers observed that when the ATM protein is eliminated, or its activation is reduced, spermatocytes (precursors of spermatozoa) which present breakage in the genome do not block their cellular cycle and therefore do not have the capacity to progress more than normal, given that they do not correctly repair DNA breakage.
This is a spermatocyte through a microscope.
The research shows that these mutations affecting the signalling route which depends on the ATM protein, as well as the drugs inhibiting the function of this signalling route such as some antitumor drugs, could produce infertility problems in humans.

The discovery will allow to delve deeper into the mechanisms regulating the formation of gametes (eggs and sperm).

It is known that the ATM protein is one of the main proteins involved in DNA repair in somatic cells (any of the cells forming part of our organism, except for germline cells). This study, published recently in PLOS Genetics, shows that in the particular case of meiotic cells such as spermatocytes, the signalling route of the ATM protein also participates in the control system of the cell cycle progression in response to DNA damage, something which until now was unknown.

Sexual reproduction requires the fusion of two gametes (egg and sperm) which combine their genetic material to produce an embryo. Therefore, the number of chromosomes of these cells must be reduced by half through a specialized cell division called meiosis.

At the beginning of meiosis, germline cells intentionally generate multiple double chain breakages along the whole DNA genome. The reparation of these DNA breakages, through a process called homologous recombination, allows homologous chromosomes to pair up and guarantee a balanced segregation during the meiotic division and thereby avoid the formation of gametes with an incorrect number of chromosomes which could result in chromosome disorders due to the presence of aneuploids (such as Down's Syndrome and other similar disorders), or in spontaneous abortions.

Since these repair errors in DNA breakage can generate instability in the genome, the process of repairing the breakages is a highly regulated one. It is therefore essential that there be control mechanisms capable of detecting errors in this process and halting the cell cycle with the aim of allowing the cell to repair the breakages or, if not possible, to eliminate the damaged cell.

[Source: Universitat Autònoma de Barcelona]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
DEC 22, 2019
Genetics & Genomics
DEC 22, 2019
New Gene Therapy Uses Exosomes to Reverse Disease
Researchers at Ohio State University have developed a new gene therapy that makes use of exosomes, fluid sacs released in cells, to carry therapeutic tools...
JAN 02, 2020
Microbiology
JAN 02, 2020
New Ideas About How Bacteria Control Cell Division
Cell division is a crucial process for life; in order to create and maintain multicellular organisms, cells have to make more cells by dividing....
JAN 02, 2020
Genetics & Genomics
JAN 02, 2020
Mysterious Extrachromosomal DNA is Linked to Childhood Cancer
Scientists are learning more about an unusual kind of DNA that's separate from a cell's genomic DNA....
JAN 20, 2020
Cell & Molecular Biology
JAN 20, 2020
Using Modified Red Blood Cells As a Drug Delivery System
For a drug to be effective, it has to get to the right place to exert its impact....
JAN 20, 2020
Genetics & Genomics
JAN 20, 2020
Braveheart RNA Structure is Revealed For the First Time
Protein-coding genes only make up a small part of the genome. Much of the rest may contain long, non-coding RNA sequences....
JAN 26, 2020
Cell & Molecular Biology
JAN 26, 2020
Using Stem Cells to Treat Chronic Pain
Scientists have used a mouse model to show that human stem cells could be used to engineer neurons that stop pain....
Loading Comments...