JUN 25, 2018 3:16 PM PDT

A Basic Rule of Brain Plasticity is Revealed

WRITTEN BY: Carmen Leitch

Our brains can adapt and learn, and that changeability is called neural plasticity. Connections between neurons can be maintained or made weaker or stronger, and it has been suggested that a balance of strong and weak connections, or synapses, must be maintained. New work by scientists at the Picower Institute for Learning and Memory at MIT has confirmed that hypothesis. They found that when a synapse gets stronger, there is an immediate weakening in nearby synapses, and a protein called Arc modulates that change. The research was reported in Science.

The senior author of the study, Mriganka Sur, was excited to find a simple rule laying the groundwork for a complex system like plasticity in the brain, but it was not surprising. To him, it’s analogous to a school of fish that can suddenly change direction, following the lead of one fish. 

"Collective behaviors of complex systems always have simple rules," said Sur, the Paul E. and Lilah Newton Professor of Neuroscience in the Picower Institute and the Department of Brain and Cognitive Sciences at MIT. "When one synapse goes up, within 50 micrometers there is a decrease in the strength of other synapses using a well-defined molecular mechanism."

Complex experiments went into this research. Lead authors and postdoctoral fellows in the Sur lab, Sami El-Boustani and Jacque Pak Kan Ip, used optogenetics, in which genetically-engineered neurons can be stimulated with light.

The scientists targeted a specific place on a neuron while showing the mouse a target. They could then change the positions of the target and flash a light on the visual cortex of the mouse brain to strengthen specific synaptic connections. When those procedures were repeated many times, it changed the receptive field of a neuron.

"I think it's quite amazing that we are able to reprogram single neurons in the intact brain and witness in the living tissue the diversity of molecular mechanisms that allows these cells to integrate new functions through synaptic plasticity," El-Boustani said.

The researchers were able to see the changes when the synapse for the receptive field got bigger; nearby synapses were also getting smaller.

To confirm their findings, the investigators collaborated with a group at the Ecole Polytechnique Federal de Lausanne in Switzerland. A high-resolution, 3D microscopy was used to image the structural differences between the manipulated (and control) neurons. 

"This is the longest length of dendrite ever reconstructed after being imaged in vivo," noted Sur, who also directs the Simons Center for the Social Brain at MIT. They also performed additional experiments without optogenetics for additional confirmation.

The team wanted to find out more about the mechanisms underlying this process and focused on a receptor called AMPA to see how it changed as the strengthening and weakening happened. They also followed the activity of a protein, called Arc, that controls the expression of AMPA. 

Collaborators at the Kyoto University Graduate School of Medicine and the University of Tokyo were able to add a tag Arc so it could be monitored in a live animal. That allowed the scientists to see that stronger synapses were also surrounded by weak ones with enriched expression of Arc. When the Arc protein was reduced, synapses could express more AMPA and conversely, increased Arc acted to lower AMPA receptor levels.

"We think Arc maintains a balance of synaptic resources," Ip said. "If something goes up, something must go down. That's the major role of Arc." 

Image of a dendrite (a branch of a neuron) with round processes or spines, expressing a red fluorescent protein together with a green tag for the protein Arc, obtained with two-photon microscopy in an awake mouse. / Credit: Sur, et. al.

Sources: AAAS/Eurekalert! Via Picoward Institute at MIT, Science

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 17, 2021
Microbiology
Malaria Pathogen Caught Invading Red Blood Cells
JUN 17, 2021
Malaria Pathogen Caught Invading Red Blood Cells
Mosquitoes are the world's deadliest animals (after humans) and they transmit malaria, which kills about 400,000 people ...
JUN 29, 2021
Microbiology
Gut Fungi May Be an Untapped Reservoir of Antibiotics
JUN 29, 2021
Gut Fungi May Be an Untapped Reservoir of Antibiotics
Viruses are not the only microbes that can cause serious public health problems. Researchers have been warning about a p ...
JUL 02, 2021
Genetics & Genomics
Fish Models Provide New Insight Into Rare Genetic Diseases
JUL 02, 2021
Fish Models Provide New Insight Into Rare Genetic Diseases
Fish can serve as good research models. They can develop quickly, outside of the mother where they can be observed. Some ...
JUL 12, 2021
Genetics & Genomics
Vision of Retinitis Pigmentosa Patient Partially Restored by New Therapy
JUL 12, 2021
Vision of Retinitis Pigmentosa Patient Partially Restored by New Therapy
Scientists have been developing gene therapies that can help restore vision that's lost due to a problem with a gene ...
JUL 15, 2021
Cell & Molecular Biology
Do Microbial Pathogens Have an Epigenetic Memory?
JUL 15, 2021
Do Microbial Pathogens Have an Epigenetic Memory?
Epigenetics are the parts of the genome that can affect the activity of genes but don't involve making changes to th ...
JUL 26, 2021
Cell & Molecular Biology
Cells Have a Self-Defense Mechanism Against Bacteria
JUL 26, 2021
Cells Have a Self-Defense Mechanism Against Bacteria
There are natural detergents that cells can use to defend themselves from pathogens. Scientists have now identified a pr ...
Loading Comments...