JUN 30, 2018 3:24 PM PDT

Printable Bone Grafts may Change Therapeutics

WRITTEN BY: Carmen Leitch

To perform a bone graft, which is a transplant of bone tissue, bone from a deceased donor is used in an allograft, or from the patient’s own supply, a process called autographing. Now researchers have devised a way to use synthetic material Hyperelastic Bone™ as a commercially available orthopedic implant. It can promote the growth of tissue in the patient and integrates as the patient’s bone during the regeneration process. For many patients, it is a huge leap forward in therapeutic options. 

"Traditional orthopedic products that are made from majority ceramic-like materials are usually very brittle, while our product has very elastic properties, even though it is made almost entirely from the same ceramic that makes up bones. If you squish it, it bounces back to its original shape," explained materials scientist Ramille Shah of Northwestern University. "And 3D printing allows us to make patient-specific or patient-matched implants, as well as unique off-the-shelf products that the surgeon can easily manipulate in the operating room." 

For Shah and collaborator Adam Jakus, a materials engineer, the work also represents a great business opportunity. They have been getting many requests for their Hyperelastic Bone™ and other 3D printing materials and paints for several years. In response, they opened a company called Dimension Inx. They are now in the process of getting FDA approval for the therapeutics they want to supply to the medical community.

"The purpose of Dimension Inx is to make advanced manufacturing, including tissue and regenerative engineering, clinically and economically viable as well as accessible to researchers and industry through the introduction of new advanced materials," noted Jakus, chief technology officer of Dimension Inx. "These materials are not only highly functional, such as Hyperelastic Bone™, but are also large-scale-manufacturing and end-user friendly." 

"For the past several decades, tissue engineering as a field has been almost entirely relegated to academic laboratories, where great discoveries have been made," added Jakus, "but it is now time for innovative technologies and materials to leave the laboratory and make it into the hands of doctors and surgeons where they can be used to help those who need them most, the patients." 

Sources: AAAS/Eurekalert! Via National Science Foundation

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 13, 2020
Cell & Molecular Biology
A Small Part of the Brain May Transmit Inflammation From Mom to Fetus
OCT 13, 2020
A Small Part of the Brain May Transmit Inflammation From Mom to Fetus
There is still a lot we don't know about the brain, and especially about two small bits of tissue deep within it called ...
OCT 18, 2020
Cell & Molecular Biology
Small RNA is Connected to Bacterial Pathogenicity
OCT 18, 2020
Small RNA is Connected to Bacterial Pathogenicity
It's thought that as much as half of the global population carries a bacterium called Helicobacter pylori in their stoma ...
OCT 19, 2020
Genetics & Genomics
Early Childhood Trauma Affects Metabolism in the Next Generation
OCT 19, 2020
Early Childhood Trauma Affects Metabolism in the Next Generation
Traumatic experiences can have a lasting impact, and kids that suffer through them can feel the effects for a lifetime. ...
OCT 20, 2020
Genetics & Genomics
The Gene Behind the Glow of the Sea Pickle is ID'ed
OCT 20, 2020
The Gene Behind the Glow of the Sea Pickle is ID'ed
In this photo by OceanX, researchers off the coast of Brazil collected Pyrosoma atlanticum specimens with a special robo ...
NOV 05, 2020
Clinical & Molecular DX
Digging DEEP into Metabolomic Space
NOV 05, 2020
Digging DEEP into Metabolomic Space
Metabolomics is an umbrella term encompassing lipidomics and the study of smaller polar metabolites.  As such, more ...
NOV 06, 2020
Cell & Molecular Biology
The Structure of Proton-Activated Chloride Channels Is Revealed
NOV 06, 2020
The Structure of Proton-Activated Chloride Channels Is Revealed
Scientists have generated structural images of a newly-described class of ion channels that help maintain the balance of ...
Loading Comments...