JUL 16, 2018 08:44 AM PDT

Preventing Aging by Protecting Ribosomes

WRITTEN BY: Carmen Leitch

As time and exposure to the elements wear organisms down and at the cellular level a gradual deterioration occurs, aging happens. Scientists have now learned more about a protein that helps protect cells from senescence, the loss of vitality and reduction in growth that accompanies the degradative processes of aging. The protein, SIRT7, can help shield a group of vulnerable genes from damage. This work, by researchers at the VA Palo Alto Health Care System (VAPAHCS), has been reported in the Journal of Biological Chemistry.

In the absence of SIRT7, a human primary cell displays multiple nucleoli. DNA was stained with DAPI (turquoise) and nucleolus was stained with anti-fibrillarin (red). / Credit: Silvana Paredes

Proteins are essential components of tissues and organs and are critical parts of the cell that are often in high demand. That makes ribosomes, the protein-making factories of the cell, extremely important and well-used. There tend to be many copies of the genes that encode for the ribosome, and many of those genes remain silent until they are needed. If genes that normally code for the ribosome become damaged or unstable, the backup genes can kick in and start doing their job. That redundancy is critical because the DNA encoding for ribosomes (rDNA) often becomes rearranged and mutated.
 
"Ribosomal DNA is one of the major hotspots for instability in the genome," explained the leader of this research, Silvana Paredes.

In the lab of Katrin Chua, which is associated with both Stanford and the Geriatric Research Education and Clinical Center at the VAPAHCS, the researchers investigated the connections between rDNA, aging, and the SIRT7 protein. Normally, SIRT7 acts to change histones, which help DNA organize properly; that allows the right parts of the genetic material to be exposed at the correct times, activating the proper genes. Paredes discovered that SIRT7 was critical to the regulation of rDNA; it keeps portions of it turned off.

If SIRT7 is removed from a cell, the scientists found that rDNA genes suffer damage; they stop dividing and show signs of aging. That indicates that SIRT7 is critical to preventing age-related cellular deterioration. In disorders like diabetes, arthritis, cancer, heart disease, and neurodegeneration, cells that are senescent (exhibiting the signs of aging) tend to accumulate. Removing those cells could have a therapeutic effect. Finding a way to keep SIRT7 active may also help researchers maintain cellular health.

"By identifying rDNA instability as an underlying trigger of senescence of human cells and demonstrating the central role of SIRT7 in protecting against this process, our studies not only provide important insights into basic mechanisms of aging but also identify potential molecular targets for aging-related disease processes," Chua concluded.

This video from the Mayo Clinic briefly describes an unrelated study in which scientists removed senescent cells from mice, and saw a dramatic lengthening of the lifespan of those research models.

Sources: AAAS/Eurekalert! Via American Society for Biochemistry and Molecular Biology, Journal of Biological Chemistry

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 13, 2018
Cell & Molecular Biology
AUG 13, 2018
In a First, Stem Cell Therapy for Parkinson's in Human Patients
A clinical trial that is the first of its kind has been started in Japan....
AUG 20, 2018
Genetics & Genomics
AUG 20, 2018
Using Population Genetics to Predict Disease Risk
Using genetics, this work has created a way to identify people at higher risk for five common diseases - before they show any symptom....
AUG 25, 2018
Cell & Molecular Biology
AUG 25, 2018
Reversing Type 1 Diabetes in Humans and Pets
Researchers may have found a surprising new way to improve symptoms of diabetes....
AUG 28, 2018
Cell & Molecular Biology
AUG 28, 2018
Finding the Source of a Common Immune Cell
Neutrophils are a highly abundant type of immune cell, outnumbering every other kind that runs through the bloodstream....
SEP 07, 2018
Videos
SEP 07, 2018
The Therapeutic Potential of Venoms
Over 220,000 species, around 15 percent of the world's described animals, are known to be venomous....
OCT 06, 2018
Cell & Molecular Biology
OCT 06, 2018
Risks Posed by the Keto Diet
It seems there is no shortage of diet trends, although we've moved on from Atkins and South Beach and into the world of Paleo and keto....
Loading Comments...