JUL 17, 2018 9:29 AM PDT

A New Player in the Control of Cell Division

WRITTEN BY: Carmen Leitch

Oil and water don’t mix; droplets form when they are combined and the liquid phases are separated. Cells can take advantage of the phase separation phenomenon by compartmentalizing stuff into different droplets. Now researchers have learned more about how a class of enzymes helps mix those separate phases at a critical time for the cell. When a cell undergoes division into two daughter cells, it’s essential for all of the cells' parts to be distributed in the right way between them. Reporting in Nature, researchers led by Lucas Pelkmans, a professor at the Institute of Molecular Life Sciences at the University of Zurich (UZH) found that DYRK3 can encourage phase mixing during cell division.

When the enzyme DYRK3 is inhibited, mitotic defects are resulting (red: droplets, green: spindle, blue: DNA).  / Credit: Arpan Rai, UZH

"These fundamental findings give us completely new insights into cell division: as a process in which the cell contents mix together and then separate again," explained Pelkmans.

This work may have major implications for biology. Now that these enzymes have been revealed as players in the critical phase-mixing process, their relevance to disease can be assessed. It’s already known that dysfunction in phase separation is connected to disease. If during cell division, phase separation does not happen in the right way, chromosomes may not be allocated evenly, leading to aberrant numbers of chromosomes in daughter cells, a known feature of many kinds of cancers.

It has also been suggested that some neurodegeneration is due to failures in phase separation that cause problems in protein function. Alzheimer’s and Parkinson’s are examples of illnesses in which abnormal proteins build up in the cell and drive disease.

In this series of frames from a movie, phase separation of a protein is observed upon inhibiting the enzyme DYRK3 (time in min. after adding the inhibitor).  / Credit: Arpan Rai, UZH

"Thanks to the discovery as to which proteins control phase separation, new strategies can be pursued to prevent mistakes in this process," noted Pelkmans.

The way that cellular components are organized, which depends on phase separation, may have an influence on aging. It is possible that as the cell ages and phase separation is mechanistically less reliable, there is a concurrent decline in mitochondrial function and homeostasis in cells is harder to maintain.

Viruses are also thought to induce phase separation, generating isolated areas where new viruses can be created. The researchers want to know more about that relationship, and potentially may engineer new therapeutics. 

"Since we now know that these enzymes control intracellular phase separation during viral infections, we can research new antiviral therapies," concluded Pelkmans.

Learn more about phase separation from the video.

 

Sources: AAAS/Eurekalert! Via University of Zurich, Cell, Bioessays, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 04, 2019
Cell & Molecular Biology
DEC 04, 2019
Scientists Reverse Cognitive Defects in Down Syndrome Mouse Model
Researchers have found a drug that can correct the memory and learning impairments that are linked to Down syndrome....
DEC 09, 2019
Genetics & Genomics
DEC 09, 2019
Researchers Rewire E. coli to Consume Carbon Dioxide
Milo et. al.   Researchers have genetically rewired the metabolism of Escherichia coli to be autotrophic, using formate (COOH) as a food sou...
DEC 15, 2019
Genetics & Genomics
DEC 15, 2019
Making T-Cell Therapy Even More Effective
Curated w/video - CRISPR/Cas9 deletion of an enzyme resulted in longer lasting, more robust therapy....
DEC 20, 2019
Neuroscience
DEC 20, 2019
Hand-Motion Center of the Brain Involved in Speech
During a long-term study focused on improving computer-assistant interfaces for quadriplegia patients, researchers at Stanford University were able to use...
JAN 02, 2020
Genetics & Genomics
JAN 02, 2020
Mysterious Extrachromosomal DNA is Linked to Childhood Cancer
Scientists are learning more about an unusual kind of DNA that's separate from a cell's genomic DNA....
FEB 13, 2020
Cell & Molecular Biology
FEB 13, 2020
Study of Early-Onset Parkinson's Reveals Potential Therapeutic
Around 500,000 Americans are diagnosed with Parkinson's disease every year, and the rate of the disease is rising....
Loading Comments...