JUL 17, 2018 09:29 AM PDT

A New Player in the Control of Cell Division

WRITTEN BY: Carmen Leitch

Oil and water don’t mix; droplets form when they are combined and the liquid phases are separated. Cells can take advantage of the phase separation phenomenon by compartmentalizing stuff into different droplets. Now researchers have learned more about how a class of enzymes helps mix those separate phases at a critical time for the cell. When a cell undergoes division into two daughter cells, it’s essential for all of the cells' parts to be distributed in the right way between them. Reporting in Nature, researchers led by Lucas Pelkmans, a professor at the Institute of Molecular Life Sciences at the University of Zurich (UZH) found that DYRK3 can encourage phase mixing during cell division.

When the enzyme DYRK3 is inhibited, mitotic defects are resulting (red: droplets, green: spindle, blue: DNA).  / Credit: Arpan Rai, UZH

"These fundamental findings give us completely new insights into cell division: as a process in which the cell contents mix together and then separate again," explained Pelkmans.

This work may have major implications for biology. Now that these enzymes have been revealed as players in the critical phase-mixing process, their relevance to disease can be assessed. It’s already known that dysfunction in phase separation is connected to disease. If during cell division, phase separation does not happen in the right way, chromosomes may not be allocated evenly, leading to aberrant numbers of chromosomes in daughter cells, a known feature of many kinds of cancers.

It has also been suggested that some neurodegeneration is due to failures in phase separation that cause problems in protein function. Alzheimer’s and Parkinson’s are examples of illnesses in which abnormal proteins build up in the cell and drive disease.

In this series of frames from a movie, phase separation of a protein is observed upon inhibiting the enzyme DYRK3 (time in min. after adding the inhibitor).  / Credit: Arpan Rai, UZH

"Thanks to the discovery as to which proteins control phase separation, new strategies can be pursued to prevent mistakes in this process," noted Pelkmans.

The way that cellular components are organized, which depends on phase separation, may have an influence on aging. It is possible that as the cell ages and phase separation is mechanistically less reliable, there is a concurrent decline in mitochondrial function and homeostasis in cells is harder to maintain.

Viruses are also thought to induce phase separation, generating isolated areas where new viruses can be created. The researchers want to know more about that relationship, and potentially may engineer new therapeutics. 

"Since we now know that these enzymes control intracellular phase separation during viral infections, we can research new antiviral therapies," concluded Pelkmans.

Learn more about phase separation from the video.

 

Sources: AAAS/Eurekalert! Via University of Zurich, Cell, Bioessays, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 15, 2019
Genetics & Genomics
OCT 15, 2019
APOE4 Carriers Have Memory Problems Before the Onset of Alzheimer's
Changes in the genes we carry can have a big impact on our risk of getting certain diseases....
OCT 15, 2019
Cell & Molecular Biology
OCT 15, 2019
A New Approach to Tick Control
Ticks can transmit a long list of diseases to humans and other animals, and more are emerging all the time....
OCT 15, 2019
Genetics & Genomics
OCT 15, 2019
Investigating Previously Unmapped Regions of the Human Genome
Researchers have used cutting edge imaging tools to map a region of the human genome that has not been well-described....
OCT 15, 2019
Cell & Molecular Biology
OCT 15, 2019
Neurons That Keep us Awake During the Day are Destroyed by Alzheimer's
Alzheimer’s disease is a devastating degenerative disorder thought to affect around 5.5 million Americans, most of whom are over the age of 65....
OCT 15, 2019
Cell & Molecular Biology
OCT 15, 2019
Researchers Discover a Cause of Antibiotic Resistance
For years, people have relied on antibiotics to cure bacterial infections, and many of those antibiotics are now becoming less effective....
OCT 15, 2019
Cell & Molecular Biology
OCT 15, 2019
Discovery of Cell's Mechanism for Sensing Oxygen Wins Nobel
It may be possible to attack cancer or treat anemia or other diseases by interfering with the cells' ability to sense oxygen....
Loading Comments...