AUG 04, 2018 11:25 AM PDT

Bioengineered Lung Successfully Grown and Transplanted

WRITTEN BY: Carmen Leitch

The successful engineering of synthetic organs has long been a goal in biomedical research, but many organs are incredibly complex structures that contain a variety of different cell types, which then have to be organized in very specific ways for proper organ function. Scientists have been plugging away at this work for years, however, and progress is being made. A new paper in Science Translational Medicine describes the successful effort to grow and transplant a synthetic lung into a large animal model.
 
 

"The number of people who have developed severe lung injuries has increased worldwide, while the number of available transplantable organs have decreased," said Joaquin Cortiella, professor of pediatric anesthesia. 

"Our ultimate goal is to eventually provide new options for the many people awaiting a transplant," said Joan Nichols, professor of internal medicine and associate director of the Galveston National Laboratory at UTMB.

Human lungs were created in the laboratory for the first time in 2014 at the University of Texas Medical Branch at Galveston, by Cortiella and Nichols. They continued their work, which involved figuring out how to lay the foundations for the lung's structure. To do so, they took a fully formed lung from an animal and stripped it of all the proteins except for the scaffolding. The result was a lung shape made from lung-specific proteins.

A single cell was taken from a study animal, a pig, to grow a matching lung on the scaffold. The cell was expanded to create a pool of matched cells, and they applied them to the scaffolding along with nutrients. After thirty days in a bioreactor, the engineered lungs were ready to be transplanted. To assess the impact of the transplant on the animal models, the investigators euthanized he animals at ten hours, two weeks, a month and two months following the transplant.

The new lungs did well, and they established the network of blood vessels they need. "We saw no signs of pulmonary edema, which is usually a sign of the vasculature not being mature enough," said Nichols and Cortiella. "The bioengineered lungs continued to develop post-transplant without any infusions of growth factors, the body provided all of the building blocks that the new lungs needed."

While the necessary blood flow was established, the functionality of the transplanted lung has to be improved. "We do know that the animals had 100 percent oxygen saturation, as they had one normal functioning lung," said Cortiella. "Even after two months, the bioengineered lung was not yet mature enough for us to stop the animal from breathing on the normal lung and switch to just the bioengineered lung."

The team is continuing this work and is taking aim at gas exchange next. They believe that these lungs can be grown for human transplant within five or ten years.

"It has taken a lot of heart and 15 years of research to get us this far. Our team has done something incredible with a ridiculously small budget and an amazingly dedicated group of people," Nichols and Cortiella added.


Sources: MedicalXpress, Science Translational Medicine

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 19, 2021
Cell & Molecular Biology
Insight Into the Molecular Basis of Rheumatoid Arthritis
APR 19, 2021
Insight Into the Molecular Basis of Rheumatoid Arthritis
New research has shown how variants in an immune gene can lead to a high risk of developing the autoimmune disorder rheu ...
MAY 03, 2021
Drug Discovery & Development
Low Dose Radiation May Improve Symptoms of Alzheimer's
MAY 03, 2021
Low Dose Radiation May Improve Symptoms of Alzheimer's
While high doses of radiation are known to be harmful, low doses may be able to help the body protect and repair. And no ...
MAY 09, 2021
Microbiology
Bacteria Can Read Genes Forwards or Backwards
MAY 09, 2021
Bacteria Can Read Genes Forwards or Backwards
One of the most basic processes in life in the creation of proteins from mRNA molecules, which are transcribed from DNA. ...
MAY 10, 2021
Genetics & Genomics
DNA Supercoiling is Found to Play a Role in Gene Expression
MAY 10, 2021
DNA Supercoiling is Found to Play a Role in Gene Expression
A cell has many ways to control gene expression, one of which is the structure of the genome itself; active genes have t ...
MAY 19, 2021
Cell & Molecular Biology
How Plant Cell Walls Stay Strong but Flexible
MAY 19, 2021
How Plant Cell Walls Stay Strong but Flexible
Plant cell walls have a special ability to expand without breaking or weakening, which is crucial for plant growth. New ...
MAY 27, 2021
Neuroscience
Research Less Likely to Be True is Cited More
MAY 27, 2021
Research Less Likely to Be True is Cited More
Researchers from the University of California San Diego have found that non-replicable data is cited 153 times more ofte ...
Loading Comments...