AUG 06, 2018 05:10 PM PDT

Learning More About Addiction Relapse

WRITTEN BY: Carmen Leitch

Researchers studying cocaine addiction have managed to significantly reduce relapse rates in a preclinical model. To do so, a molecule called BDNF was delivered directly to a part of the brain that has a critical role in reward-seeking behavior, the nucleus accumbens, just before a rat model sought out cocaine. The findings have been reported by Medical University of South Carolina (MUSC) researchers in Addiction Biology.

This is the coca plant (Erythroxylum coca) and the molecular structure of cocaine (grey: carbon, blue: nitrogen, red: oxygen, white: hydrogen). / Credit: Max Planck Institute for Chemical Ecology/ D'Auria, Jirschitzka

"We discovered that a very common protein in the brain has an additional significant role in addiction relapse," said the lead author Ana-Clara Bobadilla, a postdoctoral scholar in the Kalivas lab at MUSC.

The nucleus accumbens is a small area where signals from various parts of the brain integrate and drive behaviors that fulfill reward-seeking needs. In a first, BDNF has been shown to have a beneficial role in reducing relapse when used at the right time. 

In an addiction model of rats, first they learn to self-administer cocaine after an auditory stimulus, then after a period of that behavior, they no longer hear the stimulus and cannot get to the cocaine. Then, the stimulus returns, and then the rats go for the cocaine again. This is meant to model situations such as when an addict in recovery visits a neighborhood where they bought drugs.

These models help scientists understand the proteins that are at work in the brain during these behaviors, and how they might be modulated to impede powerful addictions. BDNF has many critical roles in the brain, impacting memory, development and other functions. Lower than normal levels of BDNF have been observed in addicts, and the researchers wanted to know how it worked if it's used at the point of relapse, a new line of inquiry.

"An important aspect of this study is that while others have shown that BDNF is important for establishing the state of addiction, we find that can also be used to reverse addiction," noted Peter Kalivas, Ph.D., professor and chair in the Department of Neuroscience. "This exemplifies that the primary effect of BDNF is to promote changes in the brain and that this capacity to change the brain contributes to how people get addicted, but also can be harnessed to remove brain pathologies such as drug addiction."

"The most exciting realization is that this protein has a very fine-tuned effect and can be timing dependent," said Bobadilla. The location and timing of administration alter the impact of BDNF.

The role of BDNF in the nucleus accumbent can now be investigated to determine how the molecule reduces relapse, and whether it is effective in reducing relapse in other drug addiction models. The MUSC team has already found that it did not effectively work to impede food-seeking impulses, which use the same reward circuits in the brain. The effect of BDNF therefore, appears to be specific to drug abuse.

While this work fills in more of the gaps in our understanding of addiction, the Kalivas lab plans to continue the line of research. They are interested in how BDNF works on the various neurons within the nucleus accumbens and the influence of BDNF on them during relapse.

"What we are doing with these studies is mapping the brain. There are plenty of uncharted territories in our understanding of neurobiology and with this work, we provided results to fill in one of those unknown questions,” said Bobadilla. With a complete map of the brain, she said, it may be possible to cure addiction.

Learn more about the connection between the changes experienced by neurons in the brain and addiction from the video above, featuring Kalivas.


Sources: AAAS/Eurekalert! Via MUSC, Addiction Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 14, 2019
Neuroscience
OCT 14, 2019
Scientists discover new pain-sensing organ in skin
Schwann cells are octopus-like cells in the nervous system that wrap around nerve cells, jelly-roll fashion, to form a special insulating layer. These cell...
OCT 14, 2019
Cell & Molecular Biology
OCT 14, 2019
Investigating the Formation of Membrane-less Organelles
The cytoplasm of cells is about 80% water, but is full of a molecular mixture of stuff that was once thought to be disorganized and random....
OCT 14, 2019
Genetics & Genomics
OCT 14, 2019
Genetic Cause for Tumor Progression
Researchers from the University of Delaware (UDEL), Harvard Medical School (HMS) and University of California, Los Angeles (UCLA), have discovered a ribonu...
OCT 14, 2019
Cell & Molecular Biology
OCT 14, 2019
During REM Sleep, the Brain Can Intentionally Forget
As we sleep, our bodies cycle through several stages. One is the REM or rapid eye movement stage, during which most dreams occur....
OCT 14, 2019
Cell & Molecular Biology
OCT 14, 2019
Watching Neurons Form the First Circuits in a Developing Embryo
As an organism develops, it has to form the right types of cells, like heart or muscle or nerve cells, and then move them into the correct places....
OCT 14, 2019
Microbiology
OCT 14, 2019
A Bacterial Pathogen Can Steal Huge Chunks of DNA From Other Microbes
Microorganisms are everywhere, and they are often engaged in a fight for resources with other microbes....
Loading Comments...