AUG 28, 2018 6:45 PM PDT

Finding the Source of a Common Immune Cell

WRITTEN BY: Carmen Leitch

Neutrophils are a highly abundant type of immune cell, outnumbering every other kind that runs through the bloodstream. But where these cells come from has remained a mystery, until now. Scientists at La Jolla Institute for Allergy and Immunology have traced them back to a progenitor cell in bone marrow. Publishing in Cell Reports, they have also linked these cells to the growth of cancer. This work could help improve treatments for chronic inflammation, neutropenia, and cancer. These cells may also serve as an early warning sign of cancer because these progenitors are found at higher levels in people with melanoma.

The top left cells represent neutrophil progenitors and the right bottom ones are fully differentiated neutrophils. The color of nucleus matches the color on the viSNE map in the middle, where red indicates higher in the hematopoietic hierarchy and yellow indicates lower. / Credit: Dr. Yanfang Peipei Zhu, La Jolla Institute for Allergy and Immunology

"For many years, the cancer immunology field has been really focused on T cells, which led to the development of checkpoint blockade and CAR-T therapies but there's a whole other arm of the immune system that plays a role in tumorigenesis," noted study leader Catherine Hedrick, Ph.D., a professor in the Division of Inflammation Biology. "We found that this particular subset of progenitor cells that promotes tumor growth and shows up in high numbers in melanoma patients. If our initial findings hold up across the board, a simple blood test could indicate if you have cancer or not."

Neutrophils play a variety of essential roles. They show up to defend the body against invading pathogens; they are on the front lines and can destroy germs, then mop up the mess and alert other parts of the immune system. They are also players in inflammation that has been linked to various diseases. Although they are a vital cell type, scientists took a while to figure out that they came from bone marrow, the site of many progenitor cells.

"Over the years, people identified different white blood cell progenitors, but the one that was missing was the neutrophil progenitor because we didn't have the tools to pull the populations apart," explained first author Yanfang Peipei Zhu, Ph.D., a postdoctoral researcher. "Now, we can study disease where neutrophils execute unique and important functions and investigate further how certain subsets of them promote tumor growth."

The researchers utilized high-dimensional mass cytometry, a tool also known as cytometry by time-of-flight (CyTOF) to learn more about these cells. The technique (described in the video) enabled them to analyze 39 different identifiers that distinguish various cell types, simultaneously. That effort led the team to find a new population of progenitor cells. Further study of these cells showed that they were progenitors that only created neutrophils, concluding the search.


 
After conducting that work in mice, Zhu’s team looked at human bone marrow and found the parallel human cell type.

"It seems this progenitor works through T cells, possibly suppressing them and turning them off but we still need to look at the mechanism," said Zhu. 

Interestingly, Zhu also found that in patients with melanoma, there were elevated levels of neutrophil progenitors. Zhu wants to follow up on that finding with other types of cancers. "If so, it could be used as a simple biomarker for early cancer discovery," added Zhu.


Sources: AAAS/Eurekalert! Via La Jolla Institute for Allergy and Immunology, Cell Reports

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 15, 2019
Genetics & Genomics
DEC 15, 2019
Making T-Cell Therapy Even More Effective
Curated w/video - CRISPR/Cas9 deletion of an enzyme resulted in longer lasting, more robust therapy....
DEC 18, 2019
Cell & Molecular Biology
DEC 18, 2019
Using Nanopores to Sequence Proteins
Researchers have now created a way to use nanopores to identify the amino acids that make up a protein....
JAN 16, 2020
Cell & Molecular Biology
JAN 16, 2020
Understanding the Restorative Power of Sleep
Scientists have learned more about how sleep gets us ready to face the challenges of the day....
JAN 20, 2020
Cell & Molecular Biology
JAN 20, 2020
Using Modified Red Blood Cells As a Drug Delivery System
For a drug to be effective, it has to get to the right place to exert its impact....
JAN 27, 2020
Cell & Molecular Biology
JAN 27, 2020
The 3D Ultrastructure of a Cell is Revealed
Seeing what's going on inside of cells presents many challenges that advances in microscopy have tried to address....
FEB 16, 2020
Cell & Molecular Biology
FEB 16, 2020
Growing Cells on Scaffolding as an Alternative to Animal Models
Researchers may have just made it easier for investigators to switch to an engineered model and replace their animal colonies with electrospun synthetics....
Loading Comments...