SEP 04, 2018 6:35 PM PDT

Powerful Imaging Reveals Immune Cells on Patrol

WRITTEN BY: Carmen Leitch

By actually viewing live immune cells in action, scientists have learned more about they act as sentinels, keeping watch for pathogens. The team, led by Dr. Adam Wall and Dr. Nicholas Condon from Professor Jenny Stow's lab at UQ's Institute for Molecular Bioscience discovered a new structure on these cells that they called  ‘tent-pole ruffles.’ These structures also shed light on how the growth of aggressive cancers is sustained.

"It's really exciting to be able to see cell behavior at unprecedented levels of resolution," Wall said. "This is discovery science at the cutting edge of microscopy and reveals how much we still have to learn about how cells function."

Reporting in the Journal of Cell Biology, the investigators used a tool called lattice light sheet microscopy. In light sheet microscopy, a laser beam is shaped into the form of a thin sheet, which passes through a specimen. Images are then detected in a different axis, which maximizes efficiency and minimizes background and damage to the sample. The lattice light sheet technique speeds up detection time to reduce damage even more, making it a great way to image biological processes as they happen. Learn more about it from the video.

The team studied a cell called a macrophage, which is a white blood cell that can find and gobble up any stuff that poses a potential threat to our health - that might be a microbe, a foreign substance, or a cancer cell. Macrophages can take up a lot of fluid, which helps them find unhealthy material, and can also trigger an immune response when necessary.

Their microscopy work enabled the researchers to discover the tent-pole ruffles on macrophages, which seem to help the cells sample the fluid around it. That sampling is called macropinocytosis. It was captured with unprecedented precision in only a few seconds.

The tent-pole ruffles are projections from the macrophage with a membrane between them as seen in the video; they allow the cells to capture especially big gulps of fluid, Wall noted.

This incredibly detailed imagery provides us with a new understanding of macropinocytosis and immune function, said Stow.

"This imaging will give us phenomenal power to reveal how cell behavior is affected in disease, to test the effects of drugs on cells, and to give us insights that will be important for devising new treatments" she added.

In cancer, for instance, the process of macropinocytosis is used by aggressive cancer cells as well. It helps them grab all the nutrients these hungry cells need for their rapid growth. The tent-pole ruffle structure is also seen in cancerous cells; the researchers plan to study molecules they have found on the ruffles, to see if they can use the ruffles to help impede cancer growth.

 

Sources: University of Queensland, Journal of Cell Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 17, 2020
Cell & Molecular Biology
MAR 17, 2020
In Search of the Original Enzyme
It has been suggested that life arose from molecules that gradually came together in the right ways to form simple cells ...
MAR 18, 2020
Genetics & Genomics
MAR 18, 2020
Finding a Treatment for Fetal Alcohol Spectrum Disorder
When developing fetuses are exposed to any amount of alcohol, they are at risk for a variety of irreversible birth defec ...
APR 03, 2020
Genetics & Genomics
APR 03, 2020
Physical Forces Can Change How Genes Are Expressed
Less than a millisecond after a cell is stretched out, genes are activated, which will result in the production of prote ...
MAY 07, 2020
Cell & Molecular Biology
MAY 07, 2020
How the Function of a Critical Immune Cell is Related to Metabolism
This work suggests that it may be possible to dampen autoimmunity or promote an immune attack on cancer through a bioche ...
MAY 18, 2020
Microbiology
MAY 18, 2020
An Antibody Against SARS May Neutralize SARS-CoV-2
SARS-CoV caused an outbreak of SARS in 2003. Samples collected from those patients back then may help us against SARS-Co ...
MAY 22, 2020
Cell & Molecular Biology
MAY 22, 2020
Some Coral Turn Neon When Stressed
Corals are immobile animals, and coral reefs are considered to be the most diverse ecosystems in the sea.
Loading Comments...