SEP 04, 2018 6:35 PM PDT

Powerful Imaging Reveals Immune Cells on Patrol

WRITTEN BY: Carmen Leitch

By actually viewing live immune cells in action, scientists have learned more about they act as sentinels, keeping watch for pathogens. The team, led by Dr. Adam Wall and Dr. Nicholas Condon from Professor Jenny Stow's lab at UQ's Institute for Molecular Bioscience discovered a new structure on these cells that they called  ‘tent-pole ruffles.’ These structures also shed light on how the growth of aggressive cancers is sustained.

"It's really exciting to be able to see cell behavior at unprecedented levels of resolution," Wall said. "This is discovery science at the cutting edge of microscopy and reveals how much we still have to learn about how cells function."

Reporting in the Journal of Cell Biology, the investigators used a tool called lattice light sheet microscopy. In light sheet microscopy, a laser beam is shaped into the form of a thin sheet, which passes through a specimen. Images are then detected in a different axis, which maximizes efficiency and minimizes background and damage to the sample. The lattice light sheet technique speeds up detection time to reduce damage even more, making it a great way to image biological processes as they happen. Learn more about it from the video.

The team studied a cell called a macrophage, which is a white blood cell that can find and gobble up any stuff that poses a potential threat to our health - that might be a microbe, a foreign substance, or a cancer cell. Macrophages can take up a lot of fluid, which helps them find unhealthy material, and can also trigger an immune response when necessary.

Their microscopy work enabled the researchers to discover the tent-pole ruffles on macrophages, which seem to help the cells sample the fluid around it. That sampling is called macropinocytosis. It was captured with unprecedented precision in only a few seconds.

The tent-pole ruffles are projections from the macrophage with a membrane between them as seen in the video; they allow the cells to capture especially big gulps of fluid, Wall noted.

This incredibly detailed imagery provides us with a new understanding of macropinocytosis and immune function, said Stow.

"This imaging will give us phenomenal power to reveal how cell behavior is affected in disease, to test the effects of drugs on cells, and to give us insights that will be important for devising new treatments" she added.

In cancer, for instance, the process of macropinocytosis is used by aggressive cancer cells as well. It helps them grab all the nutrients these hungry cells need for their rapid growth. The tent-pole ruffle structure is also seen in cancerous cells; the researchers plan to study molecules they have found on the ruffles, to see if they can use the ruffles to help impede cancer growth.

 

Sources: University of Queensland, Journal of Cell Biology

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 02, 2021
Cell & Molecular Biology
Koala Retrovirus Can Rewrite the Genome & Trigger Cancer
MAR 02, 2021
Koala Retrovirus Can Rewrite the Genome & Trigger Cancer
Retroviruses can infect cells and insert themselves into the genetic code of their host. Sometime in the past 50,000 yea ...
MAR 25, 2021
Microbiology
Good Microbes Can Help Plants Withstand Heat
MAR 25, 2021
Good Microbes Can Help Plants Withstand Heat
Bacteria live everywhere, and we're starting to understand how they affect the biology of animals and plants. This comes ...
MAR 25, 2021
Genetics & Genomics
Sperm's Molecular 'Memory' Is Revealed
MAR 25, 2021
Sperm's Molecular 'Memory' Is Revealed
The human genome contains the genes that make us who we are, because of how and when those genes are expressed. Gene exp ...
MAR 29, 2021
Cell & Molecular Biology
The Mark of a Dead Cell In Need of Cleanup: An 'Eat Me' Sign
MAR 29, 2021
The Mark of a Dead Cell In Need of Cleanup: An 'Eat Me' Sign
An illustration by Mindy Takamiya of Kyoto University iCeMS shows how dead cells signal to the body that it's time to el ...
APR 01, 2021
Cell & Molecular Biology
A Synthetic Cell That Grows and Divides Like a Natural One
APR 01, 2021
A Synthetic Cell That Grows and Divides Like a Natural One
Scientists have been tinkering with the building blocks of biology for a long time. In 2008 a synthetic genome was engin ...
APR 09, 2021
Cell & Molecular Biology
CRISPR-SNP Chip Finds Point Mutations in DNA Without PCR
APR 09, 2021
CRISPR-SNP Chip Finds Point Mutations in DNA Without PCR
Some diseases, like sickle-cell anemia and familial amyotrophic lateral sclerosis are due to errors in only a single let ...
Loading Comments...