OCT 01, 2018 8:15 AM PDT

Revealing How Antibiotics Work Against Bacteria

WRITTEN BY: Carmen Leitch

In a first, researchers directly observed an antibiotic in action as it disrupted the membrane of a bacterial cell. Before this, such studies were only possible with an artificial system, by using a liquid suspension or solvents. Now that they can see how the drug is working, researchers will be able to improve these drugs so their ability to fight pathogens, including drug-resistant bacteria, can be improved. The work has already shown how to make one of the most popular members of this class of drugs more efficient. The investigation was led by Dr. Markus Weingarth and Dr. Eefjan Breukink of Utrecht University and has been reported in Nature Communications.

Image credit: Pixabay

"To improve antibiotics, we need to understand their pharmacologically relevant states directly in the cellular environment,” explained Weingarth. "Now for the first time, we have been able to do that, thanks to an advanced NMR approach. We expect our method will be extremely useful for these native structural investigations."

NMR or nuclear magnetic resonance spectroscopy applies magnetic fields to subatomic particles, and in doing so, reveals the structure of organic chemicals. Learn more about it from the video.

Bacteria are single-celled organisms, so for most of them, their cell wall is critically important to their survival. Those walls rely on a compound called peptidoglycan to maintain structural integrity. Some antibiotics target the peptidoglycan, preventing new walls from being built. But as more pathogens develop resistance to common antibiotics and their mode of action, researchers have had to find other ways to destroy those microbes. 

One promising alternative is a class of antibiotics that act on a peptidoglycan precursor called Lipid II, which has been referred to as the Achilles heel of bacteria. Only by understanding their structure and how they work can we improve the design of those drugs, so they will be as good as they can be.
 
This new data was generated under relevant physiological conditions, providing critical information about how antibiotics interact with the Lipid II molecule in actual bacterial cell membranes, rather than just theorizing about it. In this work, a popular antimicrobial that acts on Lipid II, nisin, was used. Now researchers can apply what they've learned to make that drug better. 

"This challenging endeavor was only made possible through the combination of high-sensitivity solid-state NMR methods and equipment hosted at Utrecht University's Bijvoet Center,” said Breukink. "The insights we obtained with this powerful approach could establish a model of the long-elusive physiological pore-state of nisin and suggests novel cues to improve on nisin's activity." 

Illustration of the pore-complex formed by Lipid II and the antimicrobial peptide nisin. In cyan, flexible linker regions of nisin are highlighted that enable nisin to optimally adapt its conformation to complex bacterial cell membranes. / Credit: Utretch University


Sources: Phys.org via Utrecht University, Cell, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 08, 2021
Microbiology
Researchers Discover a New Symbiosis
MAR 08, 2021
Researchers Discover a New Symbiosis
A new type of endosymbiosis has been discovered; the organisms are shown in this image by S. Ahmerkamp, Max Planck Insti ...
MAR 11, 2021
Cell & Molecular Biology
Deadly Cancer Cells Can Move in the Wrong Direction
MAR 11, 2021
Deadly Cancer Cells Can Move in the Wrong Direction
Cancer is most deadly when it metastasizes; when cells break away from a primary site of cancer and move through the bod ...
MAR 14, 2021
Genetics & Genomics
How Stress Increases the Risk of Preterm Birth
MAR 14, 2021
How Stress Increases the Risk of Preterm Birth
Preterm birth is when a baby is born before the 37th week of pregnancy. The liver, lungs & brain undergo a crucial devel ...
MAR 17, 2021
Cell & Molecular Biology
A Critical Step in the Development of Brain Disease is ID'ed
MAR 17, 2021
A Critical Step in the Development of Brain Disease is ID'ed
Some brain diseases including mad cow disease and the human version Creutzfeldt-Jakob disease (CJD), Kuru, and fatal fam ...
APR 01, 2021
Cell & Molecular Biology
A Synthetic Cell That Grows and Divides Like a Natural One
APR 01, 2021
A Synthetic Cell That Grows and Divides Like a Natural One
Scientists have been tinkering with the building blocks of biology for a long time. In 2008 a synthetic genome was engin ...
APR 13, 2021
Microbiology
Learning How TORCH Pathogens Cause Brain Malformations
APR 13, 2021
Learning How TORCH Pathogens Cause Brain Malformations
The term TORCH pathogens refers to a group of viruses including Toxoplasma gondii, Rubella, Herpes Simplex Viruses 1 and ...
Loading Comments...