NOV 05, 2018 9:27 AM PST

Using Imaging to Understand Cancer Growth

WRITTEN BY: Carmen Leitch

Most types of cells in our body have to go through a renewal process in which older or malfunctioning cells are replaced with fresh ones that keep our bodies functioning normally. But when checks on that new growth are lost, it can lead to uncontrolled cell division and the resulting production of many new unwanted cells, as cancer. Researchers have gained new insight into how those controls are lost in cancer cells, leading to tumor growth. This work, by scientists at the Walter and Eliza Hall Institute, may improve cancer therapeutics; it was reported in Cell Cycle.

This is a still image taken from a biomedical animation of a cell replicating. / Credit: Walter and Eliza Hall Institute

Healthy cells go through a growth cycle that is split into phases. That was discovered by monitoring and modeling cells as they grew and divided into two new cells. Cell first have to copy all of their genetic material before it can then be distributed evenly between the two new cells. In this research, the scientists learned how the cell cycle is disrupted in cancerous cells.

"We found that compared with healthy immune cells, cancer cells had dramatic changes in their cell cycle," said the study co-leader, Dr. Kim Pham. "The first phase of the cell cycle, called G1, is normally tightly controlled to ensure replication occurs safely. This step is drastically shortened in cancer cells, allowing them to race through the cell cycle at a risky pace."

It had been assumed that the first phase of the cell cycle takes a variable amount of time but that the second phase of the cycle, in which DNA is replicated and the cell divides, requires a set span of time. Researchers from this group began to test that theory a few years ago and showed that in healthy immune cells, both phases can take different times. Now they have examined the same process in cancer cells.

"The old theory predicts that all variation in replication time comes from the first phase of the cell cycle. When we looked closely at the cancer cells, we found that the opposite was true: the bulk of the variation was due to the second phase of the cell cycle," explained Pham.

Pham and Professor Phil Hodgkin and collaborated with Dr. Kelly Rogers and Dr. Lachlan Whitehead of the Institute's Centre for Dynamic Imaging for this work.

"For this study, we tagged cancer cells with a fluorescent sensor that changes color as cells progress through the cell cycle," noted Pham. "We then performed single-cell imaging to track each phase of the cell cycle as they underwent replication," she said.

Whitehead then analyzed and interpreted their imaging data. A new mathematical model was created, which can predict when cells replicate.

"This study demonstrates the power of imaging to directly reveal cellular behaviors, and in some cases challenge assumptions that were made before it was possible to obtain such clear evidence," Whitehead said.

Hodgkin expects this research to influence how we think of cancer. "Accurate mathematical models of how cancer cells replicate help us predict how cancers respond to chemotherapy treatment, and how they evolve to become drug-resistant." Drug development may benefit from the discovery that the first phase of the cell cycle is limited in cancer cells; researchers could exploit that in drug design.

"Cancers have often lost the safety checks that prevent replication in the presence of errors such as DNA damage. Our work suggests the lack of these safety checks leads to the first phase of the cell cycle becoming much shorter in cancer cells. Drugs that help restore these safety checks could be beneficial for treating multiple cancers," Hodgkin added.


Sources: AAAS/Eurekalert! via Walter and Eliza Hall Institute, Cell Cycle

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 16, 2020
Cell & Molecular Biology
Newly Discovered Cell Type Predicts Arthritis Flares
JUL 16, 2020
Newly Discovered Cell Type Predicts Arthritis Flares
Arthritis can be a very unpredictable disease, causing challenges for those that have it by suddenly flaring up and maki ...
JUL 31, 2020
Genetics & Genomics
Researchers Create an Epigenetic Map of Development
JUL 31, 2020
Researchers Create an Epigenetic Map of Development
The protein-coding genes in the genome produce protein when they're active, or expressed. Learning how gene activity is ...
AUG 10, 2020
Cell & Molecular Biology
Lead Exposure Seems to Affect Gene Expression in Kids
AUG 10, 2020
Lead Exposure Seems to Affect Gene Expression in Kids
We have known for decades that lead harms the body. This work can help explain how that happens.
AUG 23, 2020
Cell & Molecular Biology
A Potential Breakthrough in Type 1 Diabetes Treatment
AUG 23, 2020
A Potential Breakthrough in Type 1 Diabetes Treatment
Salk Institute researchers created 3D cell clusters that can produce insulin, which is shown in green in their image.
AUG 28, 2020
Genetics & Genomics
'Jumping' Genes Can Regulate Gene Expression in Human Neurons
AUG 28, 2020
'Jumping' Genes Can Regulate Gene Expression in Human Neurons
Even though genes that code for protein have been an intense focus of biomedical research for decades, the human genome ...
SEP 07, 2020
Immunology
CRISPR Pumps the Brakes on the Immune System to Support Gene Therapies
SEP 07, 2020
CRISPR Pumps the Brakes on the Immune System to Support Gene Therapies
The ability to edit the human genome using CRISPR has been heralded as a revolution in medicine. However, one of the big ...
Loading Comments...