NOV 28, 2018 11:47 AM PST

Microbes with an Expanded Genetic Code can Generate new Proteins with Special Properties

WRITTEN BY: Carmen Leitch

Our genetic code is made up of four nucleotide bases, but in recent years, scientists have created microbes that incorporate totally new bases. That has opened up new avenues in synthetic biology and protein engineering. Investigators at the Scripps Research Institute have now engineered a microorganism with a genetic code that was artificially expanded. When these bacteria were exposed to temperatures that would normally prevent them from growing, some of the microbes were able to generate newly evolved proteins that could resist the effects of the heat, remaining stable at temperatures that would typically inactivate them. This work has been reported in the Journal of the American Chemical Society (JACS).

Image credit: Public domain pictures

In a DNA sequence, sets of three nucleotide bases encode for an amino acid, which forms a protein when they're strung together. There are twenty amino acids in nature. The senior author of the report, Peter Schultz, Ph.D., president and CEO of Scripps Research, pioneered a technique to use cellular machinery to incorporate novel amino acids, called non-canonical amino acids (ncAAs), into proteins. Those new proteins could potentially have characteristics that are entirely different from those generated by the usual amino acids.

The genetic code has been expanded to design proteins with unique properties that could be used, for example, as precision drugs or laboratory tools. In this work, the scientists wanted to know whether such genetic expansion and additional amino acids might confer an evolutionary advantage; are 21 amino acids better than 20 in an evolutionary context?

"Ever since we first expanded the range of amino acids that can be incorporated in proteins, much work has gone into using these systems to engineer molecules with new or enhanced properties," said Schultz. "Here, we've shown that combining an expanded genetic code with a laboratory evolution one can create proteins with enhanced properties that may not be readily achievable with nature's more limited set."

The researchers used a common microbe called E. coli and altered it so it would generate a protein called homoserine O-succinyltransferase (metA) from a set of 21 amino acids instead of the natural 20.  The protein will become inactive at certain temperatures, killing the microbe. In this study, metA mutants were created that could swap out almost any of its amino acids with an unnatural one - an ncAA. 

The E. coli was then heated to 44 degrees Celsius, at which point normal metA will inactivate. But some mutant bacteria were able to survive the heat, while bacteria that had made normal metA all died. The researchers had exerted pressure on the bacterial population and were eventually able to create bacteria that could live through temperatures that were 21 degrees above normal. 

Related: Semi-synthetic Bacterial Cell now Makes Unnatural Proteins

The team found the change in the genetic sequence that resulted in mutant metA. The special properties of one of the ncAAs had enabled the protein to remain stable.

"It's striking how making such a small mutation with a new amino acid not present in nature leads to such a significant improvement in the physical properties of the protein," said Schultz.

"This experiment raises the question of whether a 20 amino acid code is the optimal genetic code; if we discover life forms with expanded codes will they have an evolutionary advantage, and what would we be like if God had worked on the seventh day and added a few more amino acids to the code?"

Learn more about how scientists made a microbe with new nucelotide bases from the video.


Sources: AAAS/Eurekalert! Via Scripps Research Institute, JACS

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 14, 2020
Clinical & Molecular DX
Cell Line Authentication Using STR Analysis
SEP 14, 2020
Cell Line Authentication Using STR Analysis
Imagine you’re studying colon cancer using a colon cell line model. After three painstaking years of research, you ...
SEP 11, 2020
Genetics & Genomics
A Better Understanding of Telomere Length Throughout the Body
SEP 11, 2020
A Better Understanding of Telomere Length Throughout the Body
Telomeres cap the ends of chromosomes. They work to protect the chromosomes from degradation, and are known to get short ...
SEP 19, 2020
Cell & Molecular Biology
Reward and Punishment Take Similar Paths in the Mouse Brain
SEP 19, 2020
Reward and Punishment Take Similar Paths in the Mouse Brain
Scientists have determined that mice have brain cells that can help them learn to avoid bad experiences.
SEP 11, 2020
Immunology
Study Reveals Tumor Defense Mechanism... And How to Beat It
SEP 11, 2020
Study Reveals Tumor Defense Mechanism... And How to Beat It
  P53 is an infamous process gene at the core of the development of tumors.  When P53  functional, it pau ...
OCT 09, 2020
Genetics & Genomics
Using CRISPR to Destroy Cancer Cells
OCT 09, 2020
Using CRISPR to Destroy Cancer Cells
Researchers have developed a way to selectively target certain cancer cells with CRISPR.
NOV 01, 2020
Cell & Molecular Biology
There's More to Neutrophil Function Than We Knew
NOV 01, 2020
There's More to Neutrophil Function Than We Knew
Neutrophils are an abundant type of white blood cell that circulate in the blood that can provide a general defense aga ...
Loading Comments...