DEC 01, 2018 4:56 PM PST

Illuminating the Role of Membraneless Organelles

WRITTEN BY: Carmen Leitch

Princeton researchers created new tools to study the separation of liquids inside of cells into compartments, so-called membraneless organelles. The significance of this intracellular liquid phase separation has only recently been recognized. Dysfunction in membrane less organelle has been linked to various diseases including cancer and ALS.  Two papers reported in Cell describe new technologies called Corelets and CasDrop and the new findings, including how membraneless organelles influence gene expression. Below, check out the video abstract for the reports.

"These technology systems we've recently developed to control intracellular phase transitions should prove to be powerful tools for basic research and have many applications, particularly with regard to human health," said Clifford Brangwynne. He is an associate professor of chemical and biological engineering, leader of the research teams, and a Howard Hughes Medical Institute Investigator.

The researchers developed a system called Corelets, which uses proteins that are engineered to change their shape and behavior when they’re exposed to light. For this work, the tool was used to measure the levels of proteins that were promoting phase separation. The protein levels influence how membrane less organelle assemble. The researchers can thus generate a phase diagram, which describes protein concentrations.

In this study, ferritin, a protein in human blood, concentrate into a sphere and when exposed to blue light, other proteins adhere to that sphere. The researchers can trigger phase separation in different parts of the cell with different parameter changes. 

"With these light-activated tools, we have gained unprecedented insight into controlling the phase transitions inside cells," explained the lead author of this study, Dan Bracha, a postdoctoral researcher.

The other study describes how membraneless organelle formation affects the cell. Another tool called CasDrop enabled the scientists to analyze the combination of DNA and proteins, called chromatin, in the cell’s nucleus. When the membraneless organelles form, the chromatin gets deformed, which can push out unnecessary genes while pulling targeted genes together. That suggests the membraneless organelles act to restructure the genome.

CasDrop was described by the researchers as “a novel CRISPR-Cas9-based optogenetic technology.” When light is applied, proteins bind to a gene and cause a local phase separation occurs. Droplets then form on the chromatin. Check out the video below for a description of CRISPR-Cas9 technology.

"Brangwynne and colleagues have invented a novel method to investigate how interactions between proteins dynamically form condensates with phase transition properties in living cells," said Phillip Sharp, a Nobel laureate and professor at the Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology who was not involved in the studies. "The two papers highlight exciting discoveries at the interface of physics and cell biology that will lead to new treatments for diseases ranging from cancer to Alzheimer's."

Check out the video above to hear more from Brangwyne about liquid phase separation in cells.


Sources: Phys.org via Princeton University, Shin et al Cell, Bracha et al Cell

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 27, 2019
Immunology
NOV 27, 2019
Playing "Tag" with the Immune System
Human cells employ an intricate tagging system to manage protein activity in the body. By “tagging” a protein with a certain modification, cell...
DEC 09, 2019
Immunology
DEC 09, 2019
Strep Throat Bacteria "Hides" from the Immune System
Group A Streptococcus (GAS), the bacterial species famous for sore throat infections, have a secret weapon for circumventing the immune response to bacteri...
DEC 18, 2019
Genetics & Genomics
DEC 18, 2019
Learning More About The Genetic Adaptations Cancer Relies On
Cancer cells can adapt to mutations in the genome that might kill the cells by altering the activity of their genes....
DEC 29, 2019
Genetics & Genomics
DEC 29, 2019
Diet Rapidly Influences Sperm Quality
While it's known that environmental factors influence the quality of sperm, researchers have found that diet can have a rapid impact on sperm....
JAN 23, 2020
Cell & Molecular Biology
JAN 23, 2020
Scientists Engineer Venom-Producing Organoids
Snake venom is also a source of therapeutics, and a potential source of new medicines....
FEB 09, 2020
Cell & Molecular Biology
FEB 09, 2020
Switching Inflammation Off at the Molecular Level
While chronic inflammation is a natural result of getting old, experiencing stress, and toxin exposure, it's been theorized to be the basis for many chronic diseases....
Loading Comments...