DEC 06, 2018 12:07 PM PST

Exploiting a Cell's Love of Zinc to Deliver Targeted Therapeutics

WRITTEN BY: Carmen Leitch

Diabetes is a growing problem around the world, and while careful monitoring and control of insulin levels can help people manage the disease, scientists are looking for better ways to treat and potentially cure the disorder. Years of research have taught us that the pancreas carries beta cells, which produce the hormone insulin. One of the hallmarks of type 2 diabetes is the death of those insulin-producing beta cells, which exacerbates the disease. Regenerating them is a potential way to cure the disease.

Tha pancreatic islet of a rat, with cell nuclei in blue, insulin in green shows the beta cells and glucagon in red shows the alpha cells / Credit: Wikimedia Commons / Masur

That, of course, is easier said than done. Regenerative treatments are usually applied in a way that affects cells throughout the whole body, which could potentially cause many other problems. A regenerative therapy for diabetes would mean selectively growing only new beta cells. A team of researchers at Stanford University may have found a way towards that type of targeted therapy.

It was established decades ago that beta cells love to take in zinc. While that has been exploited for research purposes and made it easy for scientists to visualize beta cells in pancreatic samples, Justin Annes, MD, Ph.D., assistant professor of medicine, wanted to see if zinc could be used as a way to transport therapeutics directly to beta cells.

"The only problem was, I didn't know how to generate compounds that could test this hypothesis," Annes said. He brought chemistry graduate student Timothy Horton and Stanford ChEM-H senior research scientist Mark Smith, director of the Medicinal Chemistry Knowledge Center, onto the project.

The team used an approach based on chelation, in which a drug tightly bonds with a chemical, which is usually used to rid the body of poisonous metals like lead and mercury. In this strategy, the aim is to bond a zinc-chelating agent to any zinc it encounters and then deliver it to zinc-lovers like beta cells.

This work, which was reported in Cell Chemical Biology, is nowhere near ready for patients, but it presents a totally new approach to dealing with diabetes. "We're at the earliest stages," Annes said. 

An initial test of their hypothesis showed that when a beta-cell regenerating drug was attached to a zinc-chelating agent, the drug ends up in beta cells growing in a lab dish.

The researchers also demonstrated that the drug wasn’t just getting into any cell; it was accumulating in beta cells more than any other cell type. When a dish of rat cells, including beta cells, were exposed to the drug, the beta cells regenerated around 250 percent more than other types of cells. When the same treatment was given to human cells, beta cells regenerated roughly 130 percent more than others.

It’s too early to get excited about using this drug as a diabetes cure, but it shows that it’s an idea worth pursuing. "This is the first demonstration of a selectively delivered replication molecule in beta cells," Annes added, and "it's not sufficient for therapeutic applications." The selectivity shown in the experiments has given the researchers reason to continue the work. 

Recent research has indicated that insulin is becoming more expensive and may become much harder for diabetics to obtain in the future; it makes work that could eliminate the need for insulin all the more pressing. The video below from NBC News features a story on Americans who are rationing their insulin because they cannot afford to buy what they need.

Sources: AAAS/Eurekalert! via Stanford Medicine, JAMACell Chemical Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 27, 2019
Immunology
NOV 27, 2019
Playing "Tag" with the Immune System
Human cells employ an intricate tagging system to manage protein activity in the body. By “tagging” a protein with a certain modification, cell...
DEC 09, 2019
Genetics & Genomics
DEC 09, 2019
Researchers Rewire E. coli to Consume Carbon Dioxide
Milo et. al.   Researchers have genetically rewired the metabolism of Escherichia coli to be autotrophic, using formate (COOH) as a food sou...
DEC 15, 2019
Microbiology
DEC 15, 2019
Potential Therapeutics for Nipah Virus Are Identified
The fatality rate of Nipah virus has an estimated range of 40 to 75 percent...
DEC 18, 2019
Cell & Molecular Biology
DEC 18, 2019
Using Nanopores to Sequence Proteins
Researchers have now created a way to use nanopores to identify the amino acids that make up a protein....
DEC 22, 2019
Cell & Molecular Biology
DEC 22, 2019
Learning More About Cell Dynamics with Holo-Tomographic Microscopy
A new microscopy technique called holo-tomographic microscopy can generate 3D images and does not require labeling....
JAN 11, 2020
Genetics & Genomics
JAN 11, 2020
Single Cells Carry 'Forests' of Chromatin
Researchers are learning more about how every human cell organizes and packages about two meters of DNA....
Loading Comments...