DEC 06, 2018 10:39 AM PST

Rare Uranium Compounds Capable of High-temperature Superconductivity at Near Normal Pressure

Uranium is often associated with nuclear fuel materials, but very soon they could be used to power a new wave of industrial revolution. Scientists from Russia, China, and the U.S. have uncovered an extraordinary property of a type of uranium compounds known as the uranium hydride. These compounds can act like a superconductor at near normal atmospheric pressure.

Superconductivity happens electrons zip through a material with zero resistance, giving rise to the expulsion of magnetic flux fields (cue the frozen, levitating magnet). Superconducting materials are expected to revolutionize the electricity delivery grids, digital computers, power storage devices, and the electric transportation system.

The problem with superconductivity achieved so far is that most experiments were conducted between the absolute zero and  30 Kelvin (-406 F). Since the 1980s, scientists have uncovered an increasing number of new materials that can achieve high-temperature superconductivity.

The most recent record was held by a study from 2014. A Canada-China collaboration demonstrated superconductivity at 203 Kelvin (-94 Fahrenheit), using condensed hydrogen sulfide. But there was a catch--it was under an extremely high pressure, 150 gigapascals (an equivalent of 1.5 million times of an atmospheric pressure).

But this previous success did draw the Russian-led team's attention to the hydride type compounds. They focused at uranium, a bulky actinide. Their modeling algorithm predicted that uranium hydrides can exist, and also some variant of them could be superconducting under much lower pressures, which they managed to confirm through experiments.

Their study showed that metal hydrides hold as much potential as non-metals in terms of high-temperature superconductivity. Yet, the highest temperature for these new hydrides to work is still nowhere close to ambient temperature: 54 Kelvin (-362 Fahrenheit). 

Nonetheless, the tri-nation group thinks they have got a lot of room for improvement, that is to jack up the temperature for superconductivity to happen, by adding other elements into the uranium compounds. More importantly,  according to the researchers, it is essential to find the key mechanism that underpins the superconductive property of their uranium compounds as well as other high-temperature superconductors.

This research is published in Science Advances.

Source: Seeker via Youtube

About the Author
  • With years of experience in biomedical R & D, Daniel is also very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles.
You May Also Like
AUG 22, 2018
Chemistry & Physics
AUG 22, 2018
The Universe is Expanding, But How Fast?
Since the Big Bang, our universe has never ceased expanding. The rate of cosmic expansion, now known as the Hubble Constant, was first defined by Belgian a...
SEP 30, 2018
Technology
SEP 30, 2018
Machine Learning Optimizes Nanostructures
When geometry is a match to the indicated wavelength of the incident light, nanostructures can effectively increase the sensitivity of optic sensors due to...
OCT 05, 2018
Chemistry & Physics
OCT 05, 2018
Nuclear Reactor, Constructed by Nature
Uranium-235, making up about 0.72% of natural uranium on Earth, is a fissile isotope that fuels the nuclear chain reaction.  Back in 1972, staffs who...
NOV 07, 2018
Chemistry & Physics
NOV 07, 2018
Why Are Fruit Flies Attracted to Rotting Fruit Smell?
Fruit flies are the staple pests in the kitchen during summer. As much as these unwelcomed guests enjoy sucking up sugary juice, they are actually more att...
NOV 11, 2018
Technology
NOV 11, 2018
Creating Nanoscale-sized Electromechanical Devices.
According to a study published in Nature Communications, researchers at the University of Illinois at Urbana-Champaign discovered new methodology in creati...
DEC 05, 2018
Chemistry & Physics
DEC 05, 2018
Stretchable Ultrathin Electronic Skin Produced from a Desktop Printer
Electronic tattoos or e-tattoos are flexible polymer patches that can sense and transmit electrical signals. e-tattoos have great potential in advancing medical prosthetics and human-machine...
Loading Comments...