JAN 17, 2019 12:47 PM PST

Researchers Engineer Artificial Cell Constructs That Send Signals

WRITTEN BY: Carmen Leitch

Researchers study human disease by using models like research animals or cells that grow in dishes. Now scientists have engineered artificial cell assemblies that can send signals to one another. Fatty membranes separate the cells. They can stay in a fixed arrangement and can communicate with each other with molecules like RNA or proteins, which can stimulate more activity. The work has been reported in Nature Chemistry.

Signal molecules (blue) spread in the artificial cell structure allowing communication through the membranes. / Credit: Aurore Dupin / TUM

"Our system is a first step towards tissue-like, synthetic biological materials that exhibit complex spatial and temporal behavior in which individual cells specialize and differentiate themselves, not unlike biological organisms," explained Friedrich Simmel, a Professor of Physics of Synthetic Biosystems (E14) at the Technical University of Munich (TUM). 

At the heart of these synthetic tissues are droplets or gels that are encapsulated in membranes of fat or polymer. These cell-like building blocks are then assembled into structures. Biochemical reactions can take place inside of these so-called micro-tissues, which are able to produce proteins and RNA. Normally, active genes are transcribed into RNA, triggering protein synthesis, so this mimics gene expression inside of these micro-tissues.

The cells also contain protein channels, so signaling molecules can be exchanged between them, a feature that’s critical if scientists want to model live tissue. Chemicals can move inside and through the cells as they would in real life. These signals can also modify the cells, which all start out the same, but can end up as different types.

"Our system is the first example of a multicellular system in which artificial cells with gene expression have a fixed arrangement and are coupled via chemical signals. In this way, we achieved a form of spatial differentiation,” said Simmel.

Synthetic models of human tissue offer an alternative to animal models that can be different from humans or cell culture models that grow in only two dimensions instead of into three-dimensional structures as they would in an organism. The researchers are hopeful that these synthetic tissues will also allow them to learn more about how cells specialize and distribute work to different entities.

These artificial cell assemblies might be useful as miniature biomolecule factories, models where applications can be tested, or as sensors that can detect information and formulate responses. While the assemblies are still constructed by hand, the researchers are planning to move to micromanipulators and eventually, to 3D printing to build larger structures that are closer to what we see in whole organisms.

Sources: AAAS/Eurekalert! Via TUM, Nature Chemistry

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 22, 2020
Cell & Molecular Biology
MAR 22, 2020
Capturing Images of Firing Neurons
Our bodies run on electricity. Neurons send rapidly fired electrical signals through the brain and limbs constantly, ena ...
APR 02, 2020
Cell & Molecular Biology
APR 02, 2020
Cooling Injured Brain Cells Can Aid Recovery
According to the CDC, in 2014 there were around 2.87 million incidences of TBI-related ER visits.
APR 20, 2020
Immunology
APR 20, 2020
Making Sense of the T Cell Response Spectrum
T cells go through a sort of “training” process throughout life, and scientists recently discovered that the ...
MAY 13, 2020
Cell & Molecular Biology
MAY 13, 2020
Combined with Fasting-Mimicking Diet, Vitamin C May Have Anti-Cancer Effect
People have long been searching for natural ways to treat cancer in an effort to avoid some of the harmful side effects ...
JUN 03, 2020
Cell & Molecular Biology
JUN 03, 2020
A New Insulin That's Based on Cone Snail Venom
Insulin is a hormone that's produced by a specific set of cells in the pancreas, and it functions to regulate blood ...
JUN 04, 2020
Microbiology
JUN 04, 2020
The Big Effect of a Small Protein
Sepsis and bacterial meningitis are life-threatening diseases caused by meningococci bacteria.
Loading Comments...