JAN 17, 2019 12:47 PM PST

Researchers Engineer Artificial Cell Constructs That Send Signals

WRITTEN BY: Carmen Leitch

Researchers study human disease by using models like research animals or cells that grow in dishes. Now scientists have engineered artificial cell assemblies that can send signals to one another. Fatty membranes separate the cells. They can stay in a fixed arrangement and can communicate with each other with molecules like RNA or proteins, which can stimulate more activity. The work has been reported in Nature Chemistry.

Signal molecules (blue) spread in the artificial cell structure allowing communication through the membranes. / Credit: Aurore Dupin / TUM

"Our system is a first step towards tissue-like, synthetic biological materials that exhibit complex spatial and temporal behavior in which individual cells specialize and differentiate themselves, not unlike biological organisms," explained Friedrich Simmel, a Professor of Physics of Synthetic Biosystems (E14) at the Technical University of Munich (TUM). 

At the heart of these synthetic tissues are droplets or gels that are encapsulated in membranes of fat or polymer. These cell-like building blocks are then assembled into structures. Biochemical reactions can take place inside of these so-called micro-tissues, which are able to produce proteins and RNA. Normally, active genes are transcribed into RNA, triggering protein synthesis, so this mimics gene expression inside of these micro-tissues.

The cells also contain protein channels, so signaling molecules can be exchanged between them, a feature that’s critical if scientists want to model live tissue. Chemicals can move inside and through the cells as they would in real life. These signals can also modify the cells, which all start out the same, but can end up as different types.

"Our system is the first example of a multicellular system in which artificial cells with gene expression have a fixed arrangement and are coupled via chemical signals. In this way, we achieved a form of spatial differentiation,” said Simmel.

Synthetic models of human tissue offer an alternative to animal models that can be different from humans or cell culture models that grow in only two dimensions instead of into three-dimensional structures as they would in an organism. The researchers are hopeful that these synthetic tissues will also allow them to learn more about how cells specialize and distribute work to different entities.

These artificial cell assemblies might be useful as miniature biomolecule factories, models where applications can be tested, or as sensors that can detect information and formulate responses. While the assemblies are still constructed by hand, the researchers are planning to move to micromanipulators and eventually, to 3D printing to build larger structures that are closer to what we see in whole organisms.

Sources: AAAS/Eurekalert! Via TUM, Nature Chemistry

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 16, 2021
Cell & Molecular Biology
A Potential Way to Prevent Metastatic Cancer
JUN 16, 2021
A Potential Way to Prevent Metastatic Cancer
Metastatic cancer is the deadliest, and it can happen years after cancer has been treated to the point of remission. Met ...
JUN 29, 2021
Cell & Molecular Biology
Stress Seems to Turn Hair Gray, But It May Be Reversible
JUN 29, 2021
Stress Seems to Turn Hair Gray, But It May Be Reversible
It seems that people have known for a long time, and research has suggested that stress can cause hair to turn gray. Now ...
JUL 11, 2021
Microbiology
COVID-19 Delta Variant Seems to Grow Faster & Be More Contagious
JUL 11, 2021
COVID-19 Delta Variant Seems to Grow Faster & Be More Contagious
In October 2020, what's now called the Delta variant of SARS-CoV-2 was first detected. It's now the most prevalent strai ...
JUL 11, 2021
Drug Discovery & Development
Could Mucus-Based Drugs Replace Antibiotics?
JUL 11, 2021
Could Mucus-Based Drugs Replace Antibiotics?
Researchers from the Copenhagen Center for Glycomics in Denmark have developed a way to produce healthy mucus artificial ...
JUL 11, 2021
Drug Discovery & Development
Antibiotic Resistance May Be Passed Between Dogs and Owners
JUL 11, 2021
Antibiotic Resistance May Be Passed Between Dogs and Owners
Household pets may act as a reservoir for mcr-1, a gene that is resistant to a last-resort antibiotic, colistin. The fin ...
JUL 22, 2021
Cell & Molecular Biology
Cancer Cells in the Lab Aren't Like Cancer Cells in the Body
JUL 22, 2021
Cancer Cells in the Lab Aren't Like Cancer Cells in the Body
To study biology, researchers need models. Once those models might have been a bit limited to organisms like rats or mic ...
Loading Comments...