JAN 17, 2019 12:47 PM PST

Researchers Engineer Artificial Cell Constructs That Send Signals

WRITTEN BY: Carmen Leitch

Researchers study human disease by using models like research animals or cells that grow in dishes. Now scientists have engineered artificial cell assemblies that can send signals to one another. Fatty membranes separate the cells. They can stay in a fixed arrangement and can communicate with each other with molecules like RNA or proteins, which can stimulate more activity. The work has been reported in Nature Chemistry.

Signal molecules (blue) spread in the artificial cell structure allowing communication through the membranes. / Credit: Aurore Dupin / TUM

"Our system is a first step towards tissue-like, synthetic biological materials that exhibit complex spatial and temporal behavior in which individual cells specialize and differentiate themselves, not unlike biological organisms," explained Friedrich Simmel, a Professor of Physics of Synthetic Biosystems (E14) at the Technical University of Munich (TUM). 

At the heart of these synthetic tissues are droplets or gels that are encapsulated in membranes of fat or polymer. These cell-like building blocks are then assembled into structures. Biochemical reactions can take place inside of these so-called micro-tissues, which are able to produce proteins and RNA. Normally, active genes are transcribed into RNA, triggering protein synthesis, so this mimics gene expression inside of these micro-tissues.

The cells also contain protein channels, so signaling molecules can be exchanged between them, a feature that’s critical if scientists want to model live tissue. Chemicals can move inside and through the cells as they would in real life. These signals can also modify the cells, which all start out the same, but can end up as different types.

"Our system is the first example of a multicellular system in which artificial cells with gene expression have a fixed arrangement and are coupled via chemical signals. In this way, we achieved a form of spatial differentiation,” said Simmel.

Synthetic models of human tissue offer an alternative to animal models that can be different from humans or cell culture models that grow in only two dimensions instead of into three-dimensional structures as they would in an organism. The researchers are hopeful that these synthetic tissues will also allow them to learn more about how cells specialize and distribute work to different entities.

These artificial cell assemblies might be useful as miniature biomolecule factories, models where applications can be tested, or as sensors that can detect information and formulate responses. While the assemblies are still constructed by hand, the researchers are planning to move to micromanipulators and eventually, to 3D printing to build larger structures that are closer to what we see in whole organisms.

Sources: AAAS/Eurekalert! Via TUM, Nature Chemistry

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 15, 2020
Cardiology
Dopamine Could Cause Heart Arrhythmia After Heart Failure
SEP 15, 2020
Dopamine Could Cause Heart Arrhythmia After Heart Failure
Everyone knows that friend with a tattoo of a molecule of dopamine. Usually associated with the pleasure response, it is ...
SEP 09, 2020
Microbiology
Changing How We Think of Drug Resistance in Fungi
SEP 09, 2020
Changing How We Think of Drug Resistance in Fungi
It's been estimated that fungal infections cause more than one million deaths worldwide, and many more are affected.
SEP 27, 2020
Microbiology
New Insight Into An Old Bacterial Pathogen
SEP 27, 2020
New Insight Into An Old Bacterial Pathogen
There are many different strains of Escherichia coli bacteria, some of which live harmlessly in the human gut. But some ...
OCT 18, 2020
Genetics & Genomics
'Silent' Mutations Might Have Given SARS-CoV-2 an Edge
OCT 18, 2020
'Silent' Mutations Might Have Given SARS-CoV-2 an Edge
The pandemic virus SARS-CoV-2 is thought to have originated in bats, like many viruses. To make the leap and infect anot ...
OCT 21, 2020
Cell & Molecular Biology
Extracellular Vesicles Help Heart Cells Survive a Heart Attack
OCT 21, 2020
Extracellular Vesicles Help Heart Cells Survive a Heart Attack
During a heart attack, blood flow is blocked and cells lose oxygen and begin to die. Scientists are developing many new ...
NOV 16, 2020
Cell & Molecular Biology
How Gut Microbes Deactivate a Common Diabetes Drug
NOV 16, 2020
How Gut Microbes Deactivate a Common Diabetes Drug
Metformin is a frequently prescribed type 2 diabetes treatment but its effects can vary significantly. In some patients ...
Loading Comments...