JAN 26, 2019 6:24 PM PST

Researchers ID Protein That's Critical to Insulin Production

WRITTEN BY: Carmen Leitch

Insulin is a hormone made in the pancreas, and it has a critical role in controlling the levels of a sugar, glucose, in the blood. In the various forms of diabetes, people have problems producing or responding to the hormone, and at least 422 million people are affected by the disease. Although that has made insulin the subject of a tremendous amount of research, scientists are still learning more about it. New work by scientists at the Department of Biomedical Sciences, University of Copenhagen has identified a molecule that is essential to ensuring that the insulin hormone is folded into its functional shape. This work, which has been reported in Diabetes, may help generate new treatments for disorders like hyperinsulinemia, in which the blood contains too much insulin, or potentially, diabetes.

“We hope this new discovery will guide the development of novel drugs. Understanding the biological processes behind the production of insulin in the cells will enable us to modify the processes. We thus hope we will be able to inhibit overproduction of insulin as it occurs in children and adults with hyperinsulinemia,” said the senior study author, Associate Professor Michal Tomasz Marzec of the Department of Biomedical Sciences at the University of Copenhagen.

Functional insulin is made in the body from proinsulin, which is a molecule that has to be folded and processed correctly by other proteins so it will fulfill its biological roles. This work showed that a protein called GRP94 is essential to the folding process.

“Even though proinsulin has a relatively short sequence, it still needs help acquiring the right structure to become mature, functional insulin. However, several other studies have shown that proinsulin can be folded without help from proteins in artificial cell-free conditions. Yet, our study conducted in live cells shows that proinsulin is not folded correctly and does not acquire the right structure without help from GRP94,” explained Marzec.

In this work, the researchers disrupted the activity of the GRP94 protein in cells and found that proinsulin was improperly folded. Beta cells, which are pancreatic cells that are the source of insulin, did not release enough insulin when GRP94 levels were reduced. However, that reduction did not cause the cells to die; they appeared normal.

“This is surprising, because one would anticipate that the beta cells would die from stress when huge amounts of misfolded proinsulin accumulate inside the cells,” noted Marzec. “It is like removing the bearing beam without weakening the construction. This indicates that the GRP94 protein plays a very specialized function and that beta cells are well-prepared to mount effective responses to deal with consequences of misfolding of proinsulin. We are currently working to understand these responses and their biological and pathological consequences.”

The researchers are hopeful that their study will eventually help scientists to gain control of the process of converting proinsulin to insulin. It may be possible to treat hyperinsulinemia by inhibiting insulin production at that point. The work may also offer new insight into diabetes.

“In the long term we also hope we will be able to increase the production of insulin, ease the large production burden of beta cells in connection with type 2 diabetes and to maintain their secretion function for longer, without the need for insulin injections,” said Marzec.


Sources: AAAS/Eurekalert! via University of Copenhagen, Diabetes

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 29, 2020
Immunology
New Immune Cell Discovered in Mammary Ducts
APR 29, 2020
New Immune Cell Discovered in Mammary Ducts
Dubbed “ductal macrophages,” newly discovered immune cells found in breast tissue offer fresh promise for fu ...
MAY 10, 2020
Genetics & Genomics
Towards a Targeted Elimination of Leukemic Cells
MAY 10, 2020
Towards a Targeted Elimination of Leukemic Cells
Our blood carries many types of critical cells, including platelets, red blood cells, and white blood cells, which are m ...
MAY 12, 2020
Genetics & Genomics
Learning More About Why Some Diseases Have a Sex Bias
MAY 12, 2020
Learning More About Why Some Diseases Have a Sex Bias
The biological differences between men and women go beyond the things we're aware of like the sex chromosomes and hormon ...
MAY 18, 2020
Cell & Molecular Biology
Just One Fatty Meal Can Impair Focus
MAY 18, 2020
Just One Fatty Meal Can Impair Focus
Many tasty and convenient foods are high in fat, and new research has suggested that just one fatty meal may hinder our ...
JUN 25, 2020
Cancer
Examining the Glioma Influenced Immune System
JUN 25, 2020
Examining the Glioma Influenced Immune System
The human body is a complicated network of systems and signals.  Many systems regulate themselves or others in vari ...
JUL 10, 2020
Neuroscience
Immune Cells Key for Nervous System Development
JUL 10, 2020
Immune Cells Key for Nervous System Development
Researchers from the University of Colorado School of Medicine have found that immune cells known as microglia may play ...
Loading Comments...