JAN 26, 2019 6:24 PM PST

Researchers ID Protein That's Critical to Insulin Production

WRITTEN BY: Carmen Leitch

Insulin is a hormone made in the pancreas, and it has a critical role in controlling the levels of a sugar, glucose, in the blood. In the various forms of diabetes, people have problems producing or responding to the hormone, and at least 422 million people are affected by the disease. Although that has made insulin the subject of a tremendous amount of research, scientists are still learning more about it. New work by scientists at the Department of Biomedical Sciences, University of Copenhagen has identified a molecule that is essential to ensuring that the insulin hormone is folded into its functional shape. This work, which has been reported in Diabetes, may help generate new treatments for disorders like hyperinsulinemia, in which the blood contains too much insulin, or potentially, diabetes.

“We hope this new discovery will guide the development of novel drugs. Understanding the biological processes behind the production of insulin in the cells will enable us to modify the processes. We thus hope we will be able to inhibit overproduction of insulin as it occurs in children and adults with hyperinsulinemia,” said the senior study author, Associate Professor Michal Tomasz Marzec of the Department of Biomedical Sciences at the University of Copenhagen.

Functional insulin is made in the body from proinsulin, which is a molecule that has to be folded and processed correctly by other proteins so it will fulfill its biological roles. This work showed that a protein called GRP94 is essential to the folding process.

“Even though proinsulin has a relatively short sequence, it still needs help acquiring the right structure to become mature, functional insulin. However, several other studies have shown that proinsulin can be folded without help from proteins in artificial cell-free conditions. Yet, our study conducted in live cells shows that proinsulin is not folded correctly and does not acquire the right structure without help from GRP94,” explained Marzec.

In this work, the researchers disrupted the activity of the GRP94 protein in cells and found that proinsulin was improperly folded. Beta cells, which are pancreatic cells that are the source of insulin, did not release enough insulin when GRP94 levels were reduced. However, that reduction did not cause the cells to die; they appeared normal.

“This is surprising, because one would anticipate that the beta cells would die from stress when huge amounts of misfolded proinsulin accumulate inside the cells,” noted Marzec. “It is like removing the bearing beam without weakening the construction. This indicates that the GRP94 protein plays a very specialized function and that beta cells are well-prepared to mount effective responses to deal with consequences of misfolding of proinsulin. We are currently working to understand these responses and their biological and pathological consequences.”

The researchers are hopeful that their study will eventually help scientists to gain control of the process of converting proinsulin to insulin. It may be possible to treat hyperinsulinemia by inhibiting insulin production at that point. The work may also offer new insight into diabetes.

“In the long term we also hope we will be able to increase the production of insulin, ease the large production burden of beta cells in connection with type 2 diabetes and to maintain their secretion function for longer, without the need for insulin injections,” said Marzec.


Sources: AAAS/Eurekalert! via University of Copenhagen, Diabetes

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 10, 2019
Genetics & Genomics
DEC 10, 2019
The Fallout From the CRISPR Infant Experiment Continues
Last year, Chinese scientist He Jiankui caused tremendous controversy in the scientific world by conducting a gene-editing experiment on humans....
DEC 22, 2019
Genetics & Genomics
DEC 22, 2019
Functional Mini-Livers Made With New Bioprinting Technique
This technique, could be useful in the production of complete organs that can be transplanted into patients....
JAN 08, 2020
Cell & Molecular Biology
JAN 08, 2020
In a First, Scientists Generate Early Human Immune Cells in the Lab
Now we know more about the early stages of the human immune system....
JAN 10, 2020
Genetics & Genomics
JAN 10, 2020
Making Bad Fat Turn Good
Researchers want to turn unhealthy white fat, which stores calories, to healthier brown or beige fat that burns calories....
FEB 03, 2020
Microbiology
FEB 03, 2020
The Switch Controlling the Stage of a Common Parasite
The parasite Toxoplasma gondii is thought to infect from one-quarter to one-third of the global population....
FEB 16, 2020
Cell & Molecular Biology
FEB 16, 2020
Growing Cells on Scaffolding as an Alternative to Animal Models
Researchers may have just made it easier for investigators to switch to an engineered model and replace their animal colonies with electrospun synthetics....
Loading Comments...