FEB 24, 2019 01:35 PM PST

If Quality Control in the Mitochondria Fails, it Triggers a Stress Response

WRITTEN BY: Carmen Leitch

Inside of cells, organelles carry out various functions; the mitochondria is one cellular organelle that is thought of as the powerhouse. It's a unique organelle; it carries its own DNA and has the machinery to make its own proteins. That also means that mutations in mitochondrial DNA can cause a particular subset of human disease. Researchers at the University of Helsinki have now learned more about those disorders, and have identified a potential treatment. 

Humans inherit mitochondrial DNA from their mother, and this tiny genome only carries the code for making thirteen proteins, which are involved in energy metabolism. Mitochondrial disorders arise from mutations in those genes, which are widely varied in clinical presentation. The impact of the disease on patients shows that there is probably more to mitochondrial diseases than just problems with energy, however. The vast spectrum of the disorders has also made treating them difficult.

"The ability to treat patients has been stymied because of the fragmented understanding of the molecular pathogenesis and thus, bridging this knowledge gap is critical," explained Research Director Brendan Battersby of the Insitute of Biotechnology, University of Helsinki.

When proteins are produced, it's important that they have the right structure so they will function correctly.  Aberrant proteins can cause problems for cells, and they have to be regulated. A gene called AFG3L2 controls the quality of mitochondrial proteins; it can help stop misfolded proteins, which are toxic, from building up. That keeps the mitochondria and cell healthy. When either the AFG3L2 or paraplegin genes carry mutations, the shape and function of mitochondria are altered. 

Now, researchers in the lab of Brendan Battersby at the Institute of Biotechnology, University of Helsinki, have now learned how these genetic mutations can lead to a complex syndrome.

The scientists found that as mitochondrial proteins are newly synthesized, if the quality control over them is disrupted and aberrant proteins accumulate, a proteotoxicity triggers a cascade of downstream stress events in the mitochondria. Those events ultimately lead to a remodeling of the structure of mitochondria and a change in their function.

Interestingly, the researchers found that a drug already approved for use in the clinic and which can cross the blood-brain barrier is able to stop the production of toxic proteins, and thus reduce the resulting stress response.

"Since the mitochondrial proteotoxicity lays at the epicenter of the molecular pathogenesis, preventing the production of toxic mitochondrial proteins opens up a promising treatment paradigm to pursue for patients," said Battersby.

Next, the research team wants to follow up on this work and potentially move their efforts closer to patients by testing the drug in a mouse model.

Learn about mitochondria from the video.


Sources: AAAS/Eurekalert! via University of Helsinki, Life Science Alliance

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 06, 2019
Videos
JAN 06, 2019
Developing Tissue-engineered Discs to Treat Bad Backs
As we age, the discs of padding that sit between our vertebrae begin to wear down, which is a common cause of back pain....
FEB 04, 2019
Microbiology
FEB 04, 2019
Potential New Antibiotic is Made by an Insect-linked Microbe
Like many other organisms, bacteria have to compete for resources and have developed a wide array of strategies to use, including antibiotics....
FEB 10, 2019
Genetics & Genomics
FEB 10, 2019
Researchers Sequence 100 New Gut Microbes, Advancing Microbiome Research
We all carry around a massive community of microbes in our gastrointestinal tracts, which help us digest food and absorb nutrients....
FEB 05, 2019
Genetics & Genomics
FEB 05, 2019
How Transcription Factors Find Their Target Sites
For an organism to function properly, genes have to be turned on or off in the right places at the right times....
FEB 17, 2019
Cell & Molecular Biology
FEB 17, 2019
Stem Cells as a Potential Treatment for Parkinson's Disease
While the symptoms of Parkinson's disease vary, treatment options are limited and the condition tends to get worse over time....
MAR 07, 2019
Genetics & Genomics
MAR 07, 2019
Some Regenerative Worms Evolved the Ability Relatively Recently
Once thought to be passed down from an ancient ancestor, it actually seems that some animals gained regenerative skills on their own....
Loading Comments...