MAR 25, 2019 12:01 PM PDT

Tracking Organ Development, Cell by Cell

WRITTEN BY: Carmen Leitch

Mammals start out as a fertilized egg, and as that cell divides and proliferates into many more new cells, huge molecular changes are occurring. Understanding how thousands of cells grow from one is critical to our knowledge of not only human biology, but many aspects of life, said Jay Shendure, M.D., Ph.D., leader of the Allen Discovery Center at UW Medicine. He is the senior author on a new study in Nature that tracks the development of organs, cell by cell, in a growing mouse. The researchers focused on the genes that were expressed in about two million different cells as they went from blank slates to the specialized cell types of the mouse like the brain, muscles, skin, and stomach.

"We each came from a single cell - not just every human, but every multicellular organism on the planet. These cell lineages result in us becoming functioning organisms, but are also what unites us," said Shendure, who is a Howard Hughes Medical Institute Investigator and a Professor of Genome Sciences at the University of Washington (UW). "Major subsets of the tree of life share this general developmental program."

Many diseases, even those that don’t show up until years or decades later, can start during the developmental period. "Not only developmental diseases, but myriad common diseases of adulthood have some root in processes of development, and we just don't understand those things well enough yet," Shendure explained.

The co-lead author of the work, UW graduate student Junyue Cao developed a way to measure how genes are expressed in single cells in every part of an organism during various stages of development. The researchers used a set of three molecular barcodes to label the genetic output of every cell. Triple labeling allowed the scientists to mix the cells together, capturing gene expression data and tracing it back to individual cells. The technique took almost a year to create, but the two million cells could then be analyzed in less than two weeks.

The researchers assessed gene expression at the single-cell level in 61 mouse embryos of several ages across four days of development. They estimated that they captured data from 80 percent of cells in early embryos and a lot less - three to twenty percent in older embryos.

This approach is different from a common method in biology, where a mutation or disruption is introduced to a gene or molecule and the impacts are then studied.

"That approach only gives you a glimpse into this underlying genetic architecture of development," said a senior study author Cole Trapnell, Ph.D., an Assistant Professor of Genome Sciences at UW and a member of the Allen Discovery Center at UW Medicine. "If you could watch the entire process unfold at incredibly high resolution and then apply sophisticated computer algorithms to organize the data, you might be able to map out much bigger pieces of the genetic program that control development."

The scientists want to continue this work, and potentially track cells in the same animal eventually. This research focused on skeletal muscle formation since those processes in mice and humans have a lot in common.


Sources: Science Daily via Allen Institute, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 11, 2020
Health & Medicine
A smart path for novel biologics
NOV 11, 2020
A smart path for novel biologics
Introduction  Cell culture is at the heart of the production process for many biopharmaceuticals, but finding the o ...
NOV 12, 2020
Genetics & Genomics
Liposomes Potentially Safer Alternative to Viruses for CRISPR Delivery
NOV 12, 2020
Liposomes Potentially Safer Alternative to Viruses for CRISPR Delivery
To repair disease-causing errors in the genome, gene editing reagents like those used in CRISPR-Cas9 first have to reach ...
NOV 29, 2020
Cell & Molecular Biology
Engineering 'Smart' Cells to Kill Cancer
NOV 29, 2020
Engineering 'Smart' Cells to Kill Cancer
Cancer researchers have long been searching for a way to target cancer cells while ignoring healthy cells. A team of sci ...
DEC 11, 2020
Microbiology
When Microbes Battle for Survival, the Weakest Can Win
DEC 11, 2020
When Microbes Battle for Survival, the Weakest Can Win
Our world is filled with different types of bacteria, and they have to coexist with one another. They have to compete fo ...
DEC 28, 2020
Cell & Molecular Biology
How an Herbal Compound May Fight Pancreatic Cancer
DEC 28, 2020
How an Herbal Compound May Fight Pancreatic Cancer
For centuries, Chinese practitioners have used herbs to treat all kinds of ailments. New research has shown that one of ...
JAN 15, 2021
Genetics & Genomics
Rare Quadruple Helix DNA Found in Live Human Cells
JAN 15, 2021
Rare Quadruple Helix DNA Found in Live Human Cells
Many people picture the classic double-stranded helix when picturing a molecule of DNA, but DNA is also capable of formi ...
Loading Comments...