MAY 24, 2019 3:30 PM PDT

Why Sleep is Good for Us

WRITTEN BY: Carmen Leitch

Animals spend a lot of their lifetime asleep, and scientists have sought to understand the physiological purpose of all that spent time. Every organism with a nervous system needs sleep, and now scientists believe they have identified a reason why it’s so critical. Using a zebrafish model and three-dimensional time-lapse imaging, the researchers found that essential maintenance of DNA occurs in neuronal cells during sleep. The findings, which were reported in Nature Communications, may also indicate why sleep disruption has a significant impact on cognitive function and aging.

Simultaneous imaging of chromosome dynamics (red) and neuronal activity (green) in live zebrafish. / Credit: David Zada

As other animals and we go through life, we accumulate damage in our genomes because of environmental factors like oxidative stress and radiation, and also because of minor problems that can arise in cells. Cells have ways of repairing DNA damage, but this work indicates that during times of wakefulness, chromosome dynamics are low, damage in DNA builds up and can even become unsafe. Sleep aids the cell in repairing that damage and increasing chromosome dynamics; to maintain DNA efficiently, an organism must be asleep, and activity in the brain must be low.

"It's like potholes in the road," said study leader and Professor Lior Appelbaum of Bar-Ilan University's Mina and Everard Goodman Faculty of Life Sciences and Gonda (Goldschmied) Multidisciplinary Brain Research Center. "Roads accumulate wear and tear, especially during daytime rush hours, and it is most convenient and efficient to fix them at night when there is light traffic."

As we remain awake, problems in our DNA accumulate, which Appelbaum called the "price of wakefulness." The research team he led proposed that in neurons, sleep allows for critical DNA maintenance to occur in the nucleus of the cells. With their zebrafish model, they were able to visualize brain activity in live animals, and with high-resolution imaging, they saw that at night while the fish are resting, chromosomes are more active. Perhaps counterintuitively, the increase in dynamics ramps up the efficiency of DNA repair.

Chromosome dynamics may be a biomarker for defining cells as asleep and suggest that nuclear maintenance is why sleep is restorative.

"We've found a causal link between sleep, chromosome dynamics, neuronal activity, and DNA damage and repair with direct physiological relevance to the entire organism," Appelbaum explained. "Sleep gives an opportunity to reduce DNA damage accumulated in the brain during wakefulness."

"Despite the risk of reduced awareness to the environment, animals ranging from jellyfish to zebrafish to humans have to sleep to allow their neurons to perform efficient DNA maintenance, and this is possibly the reason why sleep has evolved and is so conserved in the animal kingdom," concluded Appelbaum. 

The video above by Harvard University contains a presentation on why sleep is beneficial.


Sources: AAAS/Eurekalert! via Bar-Ilan University, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 20, 2020
Cell & Molecular Biology
Chromatin Doesn't Behave Like a Liquid or Solid - It's a Gel
DEC 20, 2020
Chromatin Doesn't Behave Like a Liquid or Solid - It's a Gel
A cell's nucleus has to hold the entire genome. To do that, the DNA has to be carefully arranged and compacted by protei ...
DEC 28, 2020
Genetics & Genomics
Mapping Networks of Gene Expression in Cells
DEC 28, 2020
Mapping Networks of Gene Expression in Cells
Every cell contains our whole genome, but not all genes are turned on all the time; gene expression has to be very caref ...
JAN 04, 2021
Cannabis Sciences
How Does Cannabis Affect the Liver?
JAN 04, 2021
How Does Cannabis Affect the Liver?
As research on cannabis emerges, what we know about how it interacts with the liver is becoming more and more complex. A ...
JAN 05, 2021
Genetics & Genomics
Integrator: A New Type of Transcriptional Control is Discovered
JAN 05, 2021
Integrator: A New Type of Transcriptional Control is Discovered
The study of the genome once seemed like a straightforward process: a specific short sequence of three nucleotide bases ...
JAN 08, 2021
Cell & Molecular Biology
How Viruses Keep the Infection Going
JAN 08, 2021
How Viruses Keep the Infection Going
There has long been debate about whether viruses are a form of life, because many of them are only made up of a bit of g ...
JAN 12, 2021
Immunology
Killer Control: Engineered Stem Cells Dodge Transplant Rejection
JAN 12, 2021
Killer Control: Engineered Stem Cells Dodge Transplant Rejection
The first organ transplant—performed over 60 years ago—was a success because the donor and recipient were id ...
Loading Comments...