JUN 04, 2019 12:43 PM PDT

Modeling Cell Division Outside of the Cell

WRITTEN BY: Carmen Leitch

As organisms grow, their cells have to move into the right places. Cells also move as they divide, build, and maintain all kinds of organisms. Single-celled microbes need to be able to navigate around their environment as well. The physics underlying these dynamics are still not well understood. Researchers have now recreated the process of cell division, outside of a cell, to learn more about it. The findings, which include the short video below, have been reported in the Proceedings of the National Academy of Sciences (PNAS) and can help scientists create better synthetic materials and artificial cells.

“The mechanisms that allow organisms to move and change shape are inherent to life, and they are all underlaid by physics,” noted the senior author of the report Margaret Gardel, a professor of physics at the University of Chicago. “But despite how central they are for our understanding of biology, a great deal of these remain poorly understood.”

While cells have to migrate to different physical locations, cell division involves very complex movements of structures within the cell; different proteins have to get into place, the cytoskeleton has to make the right shapes, and chromosomes have to be copied and properly sorted, for example.

“How cells divide is one of the most basic aspects of trying to create life, and it's something we've been trying to understand for hundreds of years,” said Gardel.

The first author of the report, postdoctoral fellow Kim Weirich, began to use cellular components - actin, a part of the cell’s cytoskeleton, and myosin, motor proteins that are critical to muscle function - to engineer things outside of the cellular environment. 

The researchers were shocked to see that when actin proteins were separate, almond-shaped droplets would form. When myosin proteins were added, they moved to the center of the droplet, and the droplet pinched in two. “There's no precedent for this,” said Gardel. “It looks exactly like the spindles that drive cell division."

Modeling the chemistry and physics showed that actin molecules, shaped like rods, align into an ovoid shape, and myosin, trying to stay parallel to the actin, moves to the center. As more myosins accumulate, they cluster, tilting instead of remaining parallel, and pinching the structure in two. Now researchers have taken a detailed look at the process, which is very different from cell division, but probably has similar principles, the researchers suggested.

“This is the kind of thing you need to know to imagine building things like artificial tissue for a wound,” Gardel said.

“Ultimately, a great deal of problems in biology are about how ensembles of molecules work together, and because these are often materials with chemical reactions going on inside, they're very hard to model,” she added. “These kinds of studies allow us the opportunity to explore the basic principles of the forces at play.”

In the video above, Margaret Gardel is featured discussing the physical properties of cells.

Sources: Phys.org via University of Chicago, PNAS

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 19, 2021
Microbiology
Gas-Generating Microbes Highlight the Diet - Microbiome Link
APR 19, 2021
Gas-Generating Microbes Highlight the Diet - Microbiome Link
Researchers are learning more about how different species of bacteria in the human gut microbiome play a role in metabol ...
APR 27, 2021
Neuroscience
Leaky Blood-Brain Barrier Linked to Schizophrenia
APR 27, 2021
Leaky Blood-Brain Barrier Linked to Schizophrenia
Researchers from the University of Pennsylvania have found that people with schizophrenia may have a more permeable bloo ...
MAY 11, 2021
Cell & Molecular Biology
Problems in Human Egg Fertilization Are Common
MAY 11, 2021
Problems in Human Egg Fertilization Are Common
This ©MPI for Biophysical Chemistry microscopy image shows a bovine egg after fertilization.
MAY 17, 2021
Microbiology
Bacteria Can Time Their DNA Replications by the Circadian Clock
MAY 17, 2021
Bacteria Can Time Their DNA Replications by the Circadian Clock
The circadian rhythm is the body's clock, and it influences physiology at the cellular level; it can help animals, inclu ...
MAY 31, 2021
Genetics & Genomics
Gene Expression is Different in Two Parts of the Hippocampus
MAY 31, 2021
Gene Expression is Different in Two Parts of the Hippocampus
The hippocampus is a region of the brain thought to play a role in many different neurological and psychiatric disorders ...
JUN 08, 2021
Neuroscience
Simple Blood Test Can Detect Depression and Underlying Neurodegeneration
JUN 08, 2021
Simple Blood Test Can Detect Depression and Underlying Neurodegeneration
Researchers led by King’s College London have found that levels of a protein known as neurofilament light chain (N ...
Loading Comments...