JUN 18, 2019 3:40 PM PDT

Creating Universal Donor Blood With a Microbial Enzyme

WRITTEN BY: Carmen Leitch

Hospitals must always maintain a supply of the various blood types that patients might need, and right now there is a critical shortage; the Red Cross is asking for donors. About 16,500 liters are used every day in the United States. Now researchers have found a way to convert type A blood to type O, the type that’s most universally accepted. Two microbes that typically live in the human gut were found to produce enzymes that can make the conversion, which could help build a bigger supply of useful blood. The findings have been reported in Nature Microbiology.

“This is a first, and if these data can be replicated, it is certainly a major advance,” Harvey Klein, a blood transfusion expert with the National Institutes of Health’s Clinical Center who was not involved with the work told Science.

Molecules on the surface of red blood cells called antigens are what gives a person a blood type. There are four major blood types - A, B, AB and O. If type B blood is given to a person with type A blood, or vice versa, the recipient’s immune system will launch an attack against the donated red blood cells, which can be deadly. Red blood cells from a type O donor don’t have the antigens to stimulate such an attack and can therefore be used as a donor for recipients with any blood type.

In the emergency room, clinicians often don’t have time to check for a person’s blood type before giving them a blood transfusion, so universally compatible type O blood is important to have on hand. Type A blood is more common than type B, and scientists have tried to remove antigens from type A blood before in an effort to generate more universal donor blood, but previous efforts haven’t been efficient.

Scientists in the lab of Stephen Withers, a chemical biologist at the University of British Columbia (UBC) started looking to the many microbes that inhabit the human gastrointestinal tract to find a good enzyme that can remove type A antigens. Microbes in the gut are known to generate enzymes that chomp on molecules that are similar to red blood cell antigens.

Image credit: Pixabay

A metagenomic screen revealed a pair of enzymes that the gut microbe Flavonifractor plautii produces. Very low levels of the enzyme were able to convert type A blood to type O blood.

Additional work will be required before this process can be implemented. The researchers have to ensure that the offending type A antigens have been removed entirely, which has been another problem that hampered previous work. They also have to check the red blood cells completely to be sure that nothing else has been changed.

Learn more about the current shortage of blood, and how blood donors save lives from the video.

Sources: Science, Nature Microbiology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 25, 2020
Health & Medicine
MAR 25, 2020
Images of Lungs from COVID-19 Patients Reveal Diagnostic Significance
CT scans from 27 patients that first contracted Cornonavirus in Wuhan, China reveal signatures in the lungs that could h ...
APR 13, 2020
Cell & Molecular Biology
APR 13, 2020
The Longest Animal Ever Observed
The world's oceans cover about 70 percent of its surface, and they still hold many mysteries.
MAY 03, 2020
Cell & Molecular Biology
MAY 03, 2020
How One Protein is Linked to Three Different Brain Disorders
The accumulation of aberrant, misfolded proteins is a known feature of several different kinds of brain diseases.
MAY 10, 2020
Genetics & Genomics
MAY 10, 2020
Towards a Targeted Elimination of Leukemic Cells
Our blood carries many types of critical cells, including platelets, red blood cells, and white blood cells, which are m ...
MAY 18, 2020
Microbiology
MAY 18, 2020
An Antibody Against SARS May Neutralize SARS-CoV-2
SARS-CoV caused an outbreak of SARS in 2003. Samples collected from those patients back then may help us against SARS-Co ...
MAY 20, 2020
Cardiology
MAY 20, 2020
Metabolite Responsible for Poor Metabolic Response to Exercise Identified
For some, working out just doesn’t pay off. A recent study published in Cardiovascular Research by the H ...
Loading Comments...