AUG 03, 2019 8:07 PM PDT

The Rise of Drug Resistance Among Malaria Parasites

WRITTEN BY: Carmen Leitch

Around 220 million people get malaria every year after being bitten by a mosquito that's carrying the parasite that causes the disease. Children are at the greatest risk of the worst outcome; malaria killed about 435,000 people in 2017, according to the World Health Organization. It’s usually treatable with two drugs, dihydroartemisinin and piperaquine, which have been in use for about ten years. But these drugs that once reliably treated malaria are beginning to fail, alarming scientists. Researchers have reported evidence of the emerging strains of drug-resistant malaria in two reports in The Lancet. One was a clinical study evaluating the efficacy of artemisinin-based therapies currently in use in Cambodia, Thailand, and Vietnam. The researchers found that cases were getting much more difficult to treat.

The second study analyzed the genetics of the malaria parasite, Plasmodium falciparum. The strains that have gained resistance are not only common in the region, they appear to be outcompeting other strains. After collecting genetic data from 1,673 Plasmodium falciparum parasites, focusing on the KEL1 and PLA1 genes; they harbor mutations that make the parasites resistant. This resistance has become far more common since the last survey in 2013; it was now found in 80 percent of strains. The parasites had also acquired chloroquine resistance transporter gene (crt) as they spread around the region.

"We discovered that the multi-drug resistant KEL1/PLA1 malaria strain had spread aggressively, replacing local malaria parasites, and had become the dominant strain in Vietnam, Laos and northeastern Thailand. Our large-scale genomic approach demonstrates how surveillance can provide crucial information to malaria control programs, supporting them in evaluating available treatment options," said joint first author Dr. Roberto Amato, of the Wellcome Sanger Institute.

A commentary on these reports in the Lancet by Didier Ménard and David A Fidock noted that this has happened several times before in Southeast Asia. The P. falciparum parasite has become resistant to a series of drugs, “chloroquine, sulphadoxine-pyrimethamine, mefloquine, and more recently the artemisinins through point mutations or amplification in genes (crt, dhps, dhfr, mdr1, and kelch13),” noted in a Lancet commentary on the studies.

Image credit: Max Pixel

"Somehow antimalarial drug resistance always starts in that part of the world," one of the lead study authors Arjen Dondorp, a malaria research leader at the Mahidol Oxford Tropical Medicine Research Unit in Bangkok told NPR.

"In the past, chloroquine resistance originated there. Sulfadoxine-pyrimethamine, the next generation of antimalarials — resistance to that originated there. And now the artemisinin resistance also was first detected in western Cambodia." Researchers aren’t sure why this happens.

"The speed at which these resistant malaria parasites have spread in Southeast Asia is very worrying," said a senior study Professor Olivo Miotto of the Wellcome Sanger Institute, Big Data Institute at University of Oxford and Mahidol University, Bangkok. "Other drugs may be effective at the moment but the situation is extremely fragile and this study highlights that urgent action is needed to eliminate the parasites from the Greater Mekong Subregion, to prevent them spreading and evolving further."

"This study clearly shows the rapid spread of multi-drug resistant malaria across Southeast Asia. Affecting millions globally, malaria is a devastating disease, especially when access to effective treatment is unavailable," added Dr Michael Chew, Infection and Immunobiology Portfolio Manager at Wellcome.

 

Sources: Wellcome Trust Sanger Institute, NPR, The Lancet

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 23, 2019
Genetics & Genomics
DEC 23, 2019
A New Type of Muscle Cell That Could be a Target for Gene Therapy is ID'ed
Muscles have a supply of restorative stem cells called satellite cells, and now they have identified a new type....
DEC 22, 2019
Genetics & Genomics
DEC 22, 2019
New Gene Therapy Uses Exosomes to Reverse Disease
Researchers at Ohio State University have developed a new gene therapy that makes use of exosomes, fluid sacs released in cells, to carry therapeutic tools...
DEC 20, 2019
Neuroscience
DEC 20, 2019
Hand-Motion Center of the Brain Involved in Speech
During a long-term study focused on improving computer-assistant interfaces for quadriplegia patients, researchers at Stanford University were able to use...
JAN 23, 2020
Cell & Molecular Biology
JAN 23, 2020
Scientists Engineer Venom-Producing Organoids
Snake venom is also a source of therapeutics, and a potential source of new medicines....
JAN 28, 2020
Cell & Molecular Biology
JAN 28, 2020
A Rare Genetic Disorder is Effectively Treated With Modified Stem Cells
A clinical trial used stem cell gene therapy to treat a rare genetic disorder called X-CGD. Image credit: UCLA Broad Stem Cell Research Center/Nature Medicine...
FEB 09, 2020
Genetics & Genomics
FEB 09, 2020
Mosquitoes are Driven to Search for Heat in the Hunt for Meals
Mosquitoes can be dangerous disease vectors, and they infect and kill hundreds of thousands of people with illnesses like dengue, malaria, and West Nile Virus....
Loading Comments...