SEP 19, 2019 5:33 PM PDT

How Proteins Send Instant Messages

WRITTEN BY: Carmen Leitch

Our cells use proteins to carry out many critical cellular functions and are required for life. They function as messengers that send or receive signals and catalysts for chemical reactions, for example. Dysfunctional proteins can cause disease, whether it’s an error in an individual protein or a broader problem with signaling between proteins. Scientists at the University of Göttingen have now learned more about the basis of protein signaling on an atomic level.

Lisa-Marie Funk, co-first author, analysing the mechanism of a protein using specialist biophysical methods in the lab./  Credit: Nora Eulig

Reporting in Nature, researchers led by Professors Kai Tittmann and Ricardo Mata created ultra-high-resolution protein crystals of a human protein. This can reveal the positions of the atoms within the protein by exposing the crystals to a particle accelerator. Using the DESY particle accelerator, the researchers observed positively-charged subatomic particles called protons moving in and around the protein. Parts of the protein that were physically far apart could thus signal to one another instantaneously.

"The proton movements we observed closely resemble the toy known as a Newton's cradle, in which the energy is instantly transported along a chain of suspended metal balls. In proteins, these mobile protons can immediately connect other parts of the protein," explained Tittmann, who is also a Max Planck Fellow at the Max Planck Institute for Biophysical Chemistry in Göttingen.

The research team also generated high-resolution structural data for some other proteins, which showed how two heavy atoms share a proton in a type of bond called low-barrier hydrogen bonding. This resolved an old scientific controversy; we now know that this type of hydrogen bond exists in proteins and is essential to their function.

Quantum chemical calculations helped to model the process and generate a new mechanism for proton communication in proteins. "We have known for quite some time that protons can move in a concerted fashion, like in water for example. Now it seems that proteins have evolved in such a way that they can actually use these protons for signaling."

The researchers suggested that this work can help advance our understanding of protein signaling and how it goes wrong in disease. That may help the development of new therapeutics like adaptable proteins that can be used in a variety of applications, which are more environmentally friendly.

Learn more about the DESY particle accelerator from the video above, and X-ray crystallography from the video below.

Sources: AAAS/Eurekalert! via University of Göttingen, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 14, 2019
Genetics & Genomics
DEC 14, 2019
Learning More About How Gene Variants Impact Cystic Fibrosis
Cystic fibrosis is caused by a genetic mutation, but small changes other genes appear to influence the severity of the disease....
DEC 15, 2019
Microbiology
DEC 15, 2019
Potential Therapeutics for Nipah Virus Are Identified
The fatality rate of Nipah virus has an estimated range of 40 to 75 percent...
DEC 22, 2019
Cell & Molecular Biology
DEC 22, 2019
Learning More About Cell Dynamics with Holo-Tomographic Microscopy
A new microscopy technique called holo-tomographic microscopy can generate 3D images and does not require labeling....
DEC 30, 2019
Neuroscience
DEC 30, 2019
Amyloid Plaques May Not Come First in Alzheimer's
It’s commonly thought that excessive build-up of amyloid plaques, destroying the connections between nerve cells, is the first sign of Alzheimer&rsqu...
JAN 10, 2020
Genetics & Genomics
JAN 10, 2020
Making Bad Fat Turn Good
Researchers want to turn unhealthy white fat, which stores calories, to healthier brown or beige fat that burns calories....
FEB 17, 2020
Cell & Molecular Biology
FEB 17, 2020
Scientists Learn Why Some Body Clocks Are Too Short
Some individuals are morning people to the extreme. Some genetic mutations give the body clock a 20 instead of 24-hour cycle....
Loading Comments...