OCT 24, 2019 07:10 AM PDT

Imaging Tool Provides New Insight Into How Proteins are Moved in Cells

WRITTEN BY: Carmen Leitch

Our cells contain a network of filaments called microtubules. Motor proteins, including one group called kinesins, move along them, ferrying cargo to different parts of the cell. Now researchers have used a cutting edge imaging tool to learn more about what different types of motor proteins carry. The findings are changing what we know about trafficking in cells. The work, reported in the journal Traffic, has provided new insights into the control of this movement in neurons, and shed new light on neurodegenerative disease.

"What we see is that there must be some other regulation beyond what is known that is directing kinesin motor proteins within a cell," said Marvin Bentley, assistant professor of biological sciences and member of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer Polytechnic Institute. "There's a mysterious interaction, and we don't know what it is."

Human cells express 45 types of kinesin motor proteins. These molecules are structured like a pair of legs with a tail and carry many critical types of cellular molecules. Between fifteen and twenty kinesins use compartments called vesicles to move these materials. Researchers wanted to know more about how the kinesins are directed to carry the right stuff to the proper location.

Fluorescent tags can be added to molecules in cells using transgenes or antibodies so their movement can be observed. A widely used tag is green fluorescent protein (GFP). However, tagging motor proteins this way often only generates a massive jumble of green; there are so many motor proteins, making it challenging to see the movement of individual molecules.

Previous work has tackled this problem by only tagging the legs, or motor domain, to see where they went. This research resulted in the “smart motor” theory, which suggests that the motor domain only travels on certain microtubules, and ferries the cargo that sits on the ends of those microtubules. Work by Bentley’s team has suggested that other influences are at work, however.

His team created a way to tag only the tail end of a kinesin. These tails attach to specific vesicles, and their tool illustrates that kinesins carry certain cargo. A few hours after a kinesin is expressed and before too many green tails are present, the researchers could identify the vesicles that were attaching to specific kinesins. The “smart motor” theory isn’t doesn't always explain this movement. Some kinesins aren’t found in the location indicated by the theory, and others were found in places they wouldn’t theoretically be able to get to. Vesicles that were attached to kinesins that moved to portions of neurons called axons or dendrites did not line up with what was preferred by their motor domain.

"It's clear that it's not solely the preference of the motor domain that determines where these things go, there's something else that's regulating them," noted Bentley. He suggested that adapter proteins play a role too, and is hopeful that additional research will elucidate the mechanism further.

"The movement of essential neurotransmitters and metabolites within a cell is amazingly complex, but we must understand these fundamental processes before we can control diseases where this cellular traffic has gone awry, particularly in neurons," said Curt Breneman, dean of the School of Science. "Marvin's inventive approach to this problem has yielded a fascinating insight and a new direction for further research."


Sources: AAAS/Eurekalert! via Rensselaer Polytechnic Institute, Traffic

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 10, 2019
Drug Discovery & Development
DEC 10, 2019
New Potential Early Stage Treatment for Parkinson's
Parkinson’s Disease is the second most common neurodegenerative condition, affecting 35 million people globally. Currently without a cure, researcher...
DEC 10, 2019
Genetics & Genomics
DEC 10, 2019
A 'Molecular Clock' for Determining a Child's Age
This tool can aid in the diagnosis of developmental disorders, including autism spectrum disorder....
DEC 10, 2019
Cell & Molecular Biology
DEC 10, 2019
Discovery of Novel Biomarker for Lung Cancer Could Improve Survival
A molecular biomarker is discovered that improves diagnosing lung cancer and specializing treatment....
DEC 10, 2019
Cell & Molecular Biology
DEC 10, 2019
The Different Signals Sent by Brown and White Fat
Scientists have now learned more about the molecules that brown fat releases....
DEC 10, 2019
Cell & Molecular Biology
DEC 10, 2019
A New Understanding of How Scars Form
Researchers have gained new insight into how the body scars, which can help scientists prevent pathological fibrosis, and initiate scarless healing....
DEC 10, 2019
Cell & Molecular Biology
DEC 10, 2019
Using CRISPR/Cas9 to Modify Chemical Reactions in Cells
Since the CRISPR gene editor was created, researchers around the world have tweaked and refined the tool to use it in a variety of ways....
Loading Comments...