NOV 18, 2019 02:50 PM PST

Cell-Like Structures Form Out of Frog Egg Cytoplasm

WRITTEN BY: Carmen Leitch

Xenopus is a type of frog that is commonly used as a model organism in biological research, and their eggs develop outside of the body, making them especially good for studying development. Researchers have found that if ruptured, Xenopus eggs can reorganize spontaneously into compartments that resemble cells. The findings, by researchers at Stanford University, have been reported in Science.

"We were gobsmacked," said James Ferrell, M.D., Ph.D., the senior study author, and professor of chemical and systems biology and of biochemistry. "If you blend a computer, you'd end up with tiny bits of computer, and they wouldn't even be able to add two and two. But, lo and behold, the cytoplasm reorganizes."

After reassembling themselves, these compartments can continue to go through rounds of division and can generate smaller compartments. While some subcellular organelles, like the endoplasmic reticulum, are known to be capable of self-assembly outside of cells, this is the first time researchers have observed reorganization in larger structures.

Lead study author and postdoctoral scholar Xianrui Cheng, Ph.D. was studying programmed cell death, a common biological process. He saw that cytoplasm extracted from frog eggs was doing something unusual; nuclei were arranging themselves so there was equal distance between them. Cheng said that he placed the extract on slides and imaged them, and observed that it generated compartments that looked like a sheet of cells.

"If you take the cytoplasm of the frog egg -- note that the cytoplasm has been homogenized, so whatever spatial structure that was there has been completely disrupted -- and just let it sit at room temperature, it will reorganize itself and form small cell-like units. That's pretty amazing," Cheng said. These compartments were created regardless of whether sperm nuclei were added; something about the egg gave them this ability.

The scientists delved into the mechanism behind this phenomenon and determined that the cell's molecular fuel, ATP, and structural filaments called microtubules, were essential, as was a motor protein that helps the microtubules get where they need to go, called dynein.

The researchers also learned that if a chemical that prevents the cell cycle from starting was removed, and nuclei from sperm were added, the compartments could divide into smaller ones. The compartments could go through over 25 rounds of division, creating compartments of decreasing size (seen in the video).
"You're taking the material from the egg, and it divides in a mode that's reminiscent of embryonic development," Cheng said. "Just like they're supposed to in a real egg."

The cytoplasm of Xenopus eggs appears to have an inherent ability to create spatial organization, although researchers don't know its role in normal physiology, or whether other kinds of cells, not just egg cells, are capable of the same process.

The scientists want to learn more about this self-organization. "My favorite question right now," Ferrell said, "is can we make a simple model that explains the basics of this organization process? Or do we have to do something extremely complicated, like account for every single thing that we know a microtubule can do?"

Sources: Science Daily via Stanford Medicine, Science

 

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 12, 2019
Clinical & Molecular DX
DEC 12, 2019
The Three Common Herbs Combating High Blood Pressure: Molecular Mechanism Revealed
Hypertension is also known as high blood pressure is a serious condition. According to the Centers for Disease Control and Prevention, about 1 of...
DEC 12, 2019
Drug Discovery & Development
DEC 12, 2019
Tailor-made Drug for Girl with Rare Genetic Disease
Researchers have used personalized medicine to develop a tailor-made genetic treatment for a girl diagnosed with a rare genetic disease known as Batten dis...
DEC 12, 2019
Genetics & Genomics
DEC 12, 2019
A Cancer-Promoting Mutation is Found in 'Junk' DNA
A huge amount of our genome does not code for protein, but it can impact physiology in other ways....
DEC 12, 2019
Cell & Molecular Biology
DEC 12, 2019
Differences in Pediatric vs. Adult Cancer Force the Discussion of Effective Therapies
A team of scientists study the differences between childhood and adult cancer. This drives the discussion of the use of effective adult cancer treatments on children....
DEC 12, 2019
Cell & Molecular Biology
DEC 12, 2019
New Insight Into Chronic Pain May Help Create Novel Therapeutics
Acute pain can progress to chronic pain, which can cause other problems including depression, loss of motivation and sensory dysfunction....
DEC 12, 2019
Genetics & Genomics
DEC 12, 2019
Promising New Treatment for Mitochondrial Disease Found in Fruit Flies
Researchers at the University of Cambridge have discovered a protein in fruit flies that can reverse the effects of harmful mutations in mitochondrial gene...
Loading Comments...