DEC 04, 2019 9:22 AM PST

Scientists Reverse Cognitive Defects in Down Syndrome Mouse Model

WRITTEN BY: Carmen Leitch

Down syndrome (DS), caused by a chromosome abnormality in which a person carried three copies of chromosome 21, is the primary genetic cause of cognitive disability in the United States. Now researchers have found a drug that can correct the memory and learning impairments that are linked to the disorder. The scientists determined that disruptions in protein production in a part of the brain called the hippocampus are related to the mental deficits caused by the condition, and in a mouse model of DS, those problems can be reversed. The findings have been reported in Science.

A child with Down syndrome / Image credit: Public domain pictures

The cognitive problems linked to DS were thought to be irreversible, noted the researchers. But in the mouse model, called Ts65Dn, drugs targeted a stress response pathway of cells and were able to restore protein levels in the hippocampus to normal. The mice no longer displayed mental deficits. Similar drugs may work on humans.

DS is generally thought of as a genetic disease, but this work focused instead on the production and quality of proteins in the cell, or proteostasis. Co-senior study author Peter Walter, Ph.D. wanted to know more about how proteostasis and DS were connected.

“The vast majority of the field has been focusing on individual genes on chromosome 21 to figure out which ones are causally related to Down syndrome and its pathologies. Our approach was different. We were trying to uncover a link between proteostasis defects and DS,” said Walter, a professor of Biochemistry and Biophysics at UCSF.

In the mouse model, the scientists applied a technique called polysome profiling, which takes a snapshot of how the protein factories of the cell are functioning. They learned that protein levels were reduced by up to 39 percent in the DS mouse hippocampus, an area linked to memory and learning.

The cells in the hippocampus were triggering a pathway called the integrated stress response (ISR), which is alerted when something is wrong, like the presence of an extra chromosome. A protective response is then triggered, and protein production is ramped down.

“The cell is constantly monitoring its own health. When something goes wrong, the cell responds by making less protein, which is usually a sound response to cellular stress. But you need protein synthesis for higher cognitive functions, so when protein synthesis is reduced, you get a pathology of memory formation,” Walter explained.

The researchers assessed brain tissue from DS patients as well as an individual in which only some cells carried an extra copy of chromosome 21 while others were normal. They confirmed that the ISR pathway was active in the cells with the extra chromosome. ISR, therefore, seems to closely related to DS symptoms.

The scientists tried a few different approaches to turn ISR activity down that related to an enzyme called PKR, which has a role in activating ISR in the hippocampus. They deleted the PKR gene, they suppressed PKR activity with a drug, and they activated protein manufacture with a well-known drug that also interferes with ISR. Every strategy improved cognition in the mouse model. The mice exhibited positive behavioral and physiological changes. Their brains were showing signs of improved memory formation at the neurological level.

Walter acknowledged that there is a lot more work to be done. However, this is an important step towards improving the lives of people living with DS.

“We started with a situation that looked hopeless,” Walter said. “Nobody thought anything could be done. But we may have struck gold.”

Walter discusses how cells respond to stress in the lecture above.


Sources: University of California San Francisco (UCSF), Science

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 04, 2020
Microbiology
The Big Effect of a Small Protein
JUN 04, 2020
The Big Effect of a Small Protein
Sepsis and bacterial meningitis are life-threatening diseases caused by meningococci bacteria.
JUN 06, 2020
Immunology
Cancer Cell Clusters Better At Resisting the Immune System
JUN 06, 2020
Cancer Cell Clusters Better At Resisting the Immune System
For cancerous cells in the body, it seems there is safety in numbers. Researchers from a newly published study investiga ...
JUN 14, 2020
Genetics & Genomics
Human Eggs Can Choose the Sperm They Prefer
JUN 14, 2020
Human Eggs Can Choose the Sperm They Prefer
While people usually put a lot of effort into finding a partner, recent research suggests that our bodies are choosy in ...
JUN 25, 2020
Cancer
Examining the Glioma Influenced Immune System
JUN 25, 2020
Examining the Glioma Influenced Immune System
The human body is a complicated network of systems and signals.  Many systems regulate themselves or others in vari ...
JUL 28, 2020
Immunology
Immune-Brain Connection in Rare Disease Puzzles Scientists
JUL 28, 2020
Immune-Brain Connection in Rare Disease Puzzles Scientists
Huntington’s disease (HD) is a rare, inherited, and incurable condition associated with the progressive degenerati ...
AUG 09, 2020
Genetics & Genomics
Using CRISPR to Silence Essential Developmental Genes
AUG 09, 2020
Using CRISPR to Silence Essential Developmental Genes
The CRISPR gene-editing tool has changed research and is now making impacts in clinical medicine.
Loading Comments...