DEC 16, 2019 9:35 AM PST

When Migrating, Cancer Cells Choose the Path of Least Resistance

WRITTEN BY: Carmen Leitch

Cancer becomes most deadly when it has metastasized - when cancerous cells move away from the site where cancer started growing and into the lymphatic system or bloodstream, which generates new tumors in other places. It has been estimated that 90 percent of cancer deaths are due to metastasis. Now researchers have learned more about how metastatic cancer cells choose their path.

Reporting in Nature Communications, the scientists report that metastatic cancer cells may move quickly, but they're lazy in selecting their route. They pick their path based on how much energy will be required; they opt for wider spaces that are easy to navigate over tight, confined spaces, which reduces the amount of energy it takes to get through.

The work suggests that metabolism and energy are crucial factors during metastatic movement. It may further raise research interest in cellular metabolism as factors in cancer, and make metabolomics a bigger target in the prevention of metastasis.

This study, led by Cornelius Vanderbilt Professor of Engineering Cynthia Reinhart-King of Vanderbilt University, is the first to quantify the energy that cancer cells use during metastasis, which can help predict the path of migration. It builds on previous work by the Reinhart-King lab that identified tools that cancer cells use as they migrate. These cells act like a car driver trying to save gas, by drafting behind other cells. The cells in the front use more energy as they carve a path and the ones in the back don't need as much energy. When the ones in front are worn out, cells in the rear can move ahead and take on a bigger workload.

A cancer cell migrating through a collagen track with fluorescent biomarkers showing cellular energy levels assigned a hue on the color spectrum from purple (low energy) to yellow (high energy). / Credit: Reinhart-King Lab / Vanderbilt University

"These cells are lazy. They want to move, but they will find the easiest way to do it," explained Reinhart-King. "By manipulating many different variables, we were able to track and build predictions of cellular preference for these paths of least resistance in the body based on how much energy a cell would need to move."

In this study, the cellular movement of cancer cells was tracked through a maze, and graduate student and lead study author Matthew Zanotelli tinkered with the properties of the paths and the mechanical characteristics of the cells. Although their focus was metastatic cancer cells, this research may have broader impact, he noted.

"This type of cellular movement happens in other instances, for example, during inflammation and around healing wounds," said Zanotelli. "We're excited to have this initial understanding of energy and cell migration and hope it will prove foundational for future, broader research."


Sources: AAAS/Eurekalert! via Vanderbilt University, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 09, 2020
Cell & Molecular Biology
Custom Manufacturing: Translating Research into Product
JUN 09, 2020
Custom Manufacturing: Translating Research into Product
Scientists around the world are focusing their energy and resources on translating advances made in clinical research in ...
JUN 15, 2020
Genetics & Genomics
Genetic Variant Study Links Brain Cells to Multiple Sclerosis
JUN 15, 2020
Genetic Variant Study Links Brain Cells to Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disorder, in which the immune system attacks an insulating sheath that coats ne ...
JUL 12, 2020
Cell & Molecular Biology
Lung Cancer is Different in Non-Smokers
JUL 12, 2020
Lung Cancer is Different in Non-Smokers
Not everyone that gets lung cancer is a current or former smoker, and researchers have now found that lung cancer is dif ...
JUL 13, 2020
Cell & Molecular Biology
Getting a Closer Look at the Internal Scaffolding Supporting the Body
JUL 13, 2020
Getting a Closer Look at the Internal Scaffolding Supporting the Body
Researchers tagged proteins in the basement membranes of worms to visulize them. Image credit: Dan Keeley, UNC Chapel Hi ...
JUL 25, 2020
Cell & Molecular Biology
Mammalian Cells May Have Trouble Fighting Space Bugs
JUL 25, 2020
Mammalian Cells May Have Trouble Fighting Space Bugs
New research has suggested that humans and other terrestrial mammals might have trouble identifying and responding to mi ...
AUG 01, 2020
Cardiology
A Breakthrough in Using Human Cells to 3D Print a Heart Pump
AUG 01, 2020
A Breakthrough in Using Human Cells to 3D Print a Heart Pump
This study has also demonstrated that there is a way to print heart muscle cells that causes them to organize and work i ...
Loading Comments...