DEC 23, 2019 12:32 PM PST

An Antioxidant Found in Green Tea Can Fight Tuberculosis

WRITTEN BY: Carmen Leitch

In 2018, around ten million people around the globe were sickened by tuberculosis (TB) and about 1.5 million people were killed by tuberculosis (TB). The disease is caused by a bacterium called Mycobacterium tuberculosis, which tends to affect the lungs. While the incidence of the disease is falling according to the World Health Organization, drug-resistant TB is becoming a problem. The infection is spread easily because when an infected individual sneezes, coughs or spits, they send TB-causing germs into the air. Only a few of those germs have to be inhaled for another person to get sick.

Researchers at Nanyang Technological University, Singapore (NTU Singapore) have discovered that an antioxidant called epigallocatechin gallate (EGCG), which is found in the green tea plant, can inhibit the growth of the bacterium that causes TB. Led by NTU Professor Gerhard Grüber, the scientists determined that EGCG binds to an enzyme that helps provide energy to bacterial cells. If EGCG is attached to the enzyme, there is less energy for critical processes that contribute to the stability and growth of this bacterial pathogen.

Published in Scientific Reports, the researchers have also found the places on the enzyme where the EGCG compound binds and dampens energy production. This work could help in the development of drugs to combat the deadly disease.

"Though tuberculosis is curable, the success of current drugs on the market is increasingly being overshadowed by the bacteria's clinical resistance," Grüber noted. "Our discovery of the EGCG's ability to inhibit the growth of M. tuberculosis will allow us to look at how we can improve the potency of this compound in green tea, and other similar compounds, to develop new drugs to tackle this airborne disease."

A strong cell wall holds its contents inside and is vital to the survival of a cell. Cells need a lot of energy to build that wall, and ATP is a crucial source of cellular energy for that and many other critical functions. The enzyme that creates ATP is called ATP synthase; without the enzyme, a cell will eventually die.

A medical illustration of drug-resistant, Mycobacterium tuberculosis bacteria Credit: CDC / Antibiotic Resistance Coordination and Strategy Unit / Medical Illustrators: Alissa Eckert; James Archer

The researchers wanted to know how to disrupt the bacterial ATP synthase to limit energy. They found that if ATP synthase was genetically altered in two microbes that are similar to M. tuberculosis, called Mycobacterium smegmatis and Mycobacterium bovis, cell growth was slowed and their shape was altered.

Next, the team looked for molecules that could potentially bind to ATP synthase to disrupt its activity, and analyzed their efficacy. The best candidate they identified was EGCG, which is a natural antioxidant found in large amounts in green tea. It was able to lower the levels of bacterial energy.

Now the scientists want to improve EGCG activity so it's more potent in the fight against the tuberculosis pathogen. Their aim is to defeat multi-drug resistant tuberculosis with a drug cocktail.


Sources: AAAS/Eurekalert! via Nanyang Technological University, Scientific Reports

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 15, 2019
Cell & Molecular Biology
DEC 15, 2019
Using a Bacterial Syringe to Deliver Proteins to Cells
Researchers want to use a pathogen's strategy for therapeutic purposes....
DEC 15, 2019
Microbiology
DEC 15, 2019
Potential Therapeutics for Nipah Virus Are Identified
The fatality rate of Nipah virus has an estimated range of 40 to 75 percent...
JAN 10, 2020
Genetics & Genomics
JAN 10, 2020
Making Bad Fat Turn Good
Researchers want to turn unhealthy white fat, which stores calories, to healthier brown or beige fat that burns calories....
JAN 12, 2020
Cell & Molecular Biology
JAN 12, 2020
Changing Two Cellular Pathways Extends Lifespan Significantly
Altering two signaling pathways extended the lives of a research model called C elegans by an astonishing 500 percent....
JAN 22, 2020
Microbiology
JAN 22, 2020
Tuberculosis Pathogen Can Survive in Soil Amoebae
Researchers have learned that the bacterium that causes bovine tuberculosis is able to survive and grow inside of amoeba that live in soil....
FEB 03, 2020
Microbiology
FEB 03, 2020
The Switch Controlling the Stage of a Common Parasite
The parasite Toxoplasma gondii is thought to infect from one-quarter to one-third of the global population....
Loading Comments...