DEC 23, 2019 12:32 PM PST

An Antioxidant Found in Green Tea Can Fight Tuberculosis

WRITTEN BY: Carmen Leitch

In 2018, around ten million people around the globe were sickened by tuberculosis (TB) and about 1.5 million people were killed by tuberculosis (TB). The disease is caused by a bacterium called Mycobacterium tuberculosis, which tends to affect the lungs. While the incidence of the disease is falling according to the World Health Organization, drug-resistant TB is becoming a problem. The infection is spread easily because when an infected individual sneezes, coughs or spits, they send TB-causing germs into the air. Only a few of those germs have to be inhaled for another person to get sick.

Researchers at Nanyang Technological University, Singapore (NTU Singapore) have discovered that an antioxidant called epigallocatechin gallate (EGCG), which is found in the green tea plant, can inhibit the growth of the bacterium that causes TB. Led by NTU Professor Gerhard Grüber, the scientists determined that EGCG binds to an enzyme that helps provide energy to bacterial cells. If EGCG is attached to the enzyme, there is less energy for critical processes that contribute to the stability and growth of this bacterial pathogen.

Published in Scientific Reports, the researchers have also found the places on the enzyme where the EGCG compound binds and dampens energy production. This work could help in the development of drugs to combat the deadly disease.

"Though tuberculosis is curable, the success of current drugs on the market is increasingly being overshadowed by the bacteria's clinical resistance," Grüber noted. "Our discovery of the EGCG's ability to inhibit the growth of M. tuberculosis will allow us to look at how we can improve the potency of this compound in green tea, and other similar compounds, to develop new drugs to tackle this airborne disease."

A strong cell wall holds its contents inside and is vital to the survival of a cell. Cells need a lot of energy to build that wall, and ATP is a crucial source of cellular energy for that and many other critical functions. The enzyme that creates ATP is called ATP synthase; without the enzyme, a cell will eventually die.

A medical illustration of drug-resistant, Mycobacterium tuberculosis bacteria Credit: CDC / Antibiotic Resistance Coordination and Strategy Unit / Medical Illustrators: Alissa Eckert; James Archer

The researchers wanted to know how to disrupt the bacterial ATP synthase to limit energy. They found that if ATP synthase was genetically altered in two microbes that are similar to M. tuberculosis, called Mycobacterium smegmatis and Mycobacterium bovis, cell growth was slowed and their shape was altered.

Next, the team looked for molecules that could potentially bind to ATP synthase to disrupt its activity, and analyzed their efficacy. The best candidate they identified was EGCG, which is a natural antioxidant found in large amounts in green tea. It was able to lower the levels of bacterial energy.

Now the scientists want to improve EGCG activity so it's more potent in the fight against the tuberculosis pathogen. Their aim is to defeat multi-drug resistant tuberculosis with a drug cocktail.


Sources: AAAS/Eurekalert! via Nanyang Technological University, Scientific Reports

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 01, 2021
Microbiology
Some Insects Can Fight Off Parasites with Genes From a Virus
AUG 01, 2021
Some Insects Can Fight Off Parasites with Genes From a Virus
The genetic action in this 'evolutionary arms races' involves gene swapping and three organisms.
AUG 04, 2021
Genetics & Genomics
Variants May Predict Which Young People Are at Risk for Severe COVID-19
AUG 04, 2021
Variants May Predict Which Young People Are at Risk for Severe COVID-19
While people carry mostly the same genes, there are many small changes in the sequences of those genes, and small variat ...
AUG 05, 2021
Clinical & Molecular DX
Gene Markers in Mothers Point to the Risk of Preterm Birth
AUG 05, 2021
Gene Markers in Mothers Point to the Risk of Preterm Birth
Preterm births—when the baby is born fewer than 37 weeks gestational age—are very common. Experts estimate o ...
AUG 09, 2021
Cell & Molecular Biology
Muscle Cells Revealed Contracting at the Subcellular Level
AUG 09, 2021
Muscle Cells Revealed Contracting at the Subcellular Level
Muscle cells were once thought to be the smallest units that experienced contraction. But new research has suggested tha ...
AUG 12, 2021
Cancer
Promising Drug Target Identified for Deadly Ovarian Cancer
AUG 12, 2021
Promising Drug Target Identified for Deadly Ovarian Cancer
Scientists at the University of Alabama at Birmingham have identified a gene called DOT1L for its role in progressing th ...
AUG 31, 2021
Genetics & Genomics
A Method to Detect Genetically Modified Animals in the Environment
AUG 31, 2021
A Method to Detect Genetically Modified Animals in the Environment
Genetically modified mice, fruit flies, and zebrafish are commonly used in research. Scientists have now developed a met ...
Loading Comments...